Distr.
RESTRICTED

LC/DEM/R.252
Series A, N°304
29 December 1995

ORIGINAL: ENGLISH

CELADE
Latin American Demographic Centre

A NEW OPEN STRUCTURE AND LANGUAGE FOR THE
winR+ STATISTICAL PROCESSOR

(Working Paper)

This document has been reproduced without formal editing.

TABLE OF CONTENTS

BACKGROUND (1)

Present situation
A better way of doing things

COMMANDS (3)

Overview

The RUNDEF command

The DEFINE command

The TABLE command
STATISTICAL PROCESSOR (15)

Overview

Syntaxis/Semantic analysis

Execution Loop

Output processing
IMPLEMENTATION SCHEME (29)

Prototype

Final version
APPENDIX 1 - Old vs New syntax, few exemples (30)
APPENDIX 2 - Constants, Operator & Functions (31)
APPENDIX 3 - Error Messages (33)

APPENDIX 4 - Internal structures summary (34)

APPENDIX 5 - First Pass Assembly Language (36)
APPENDIX 6 - Second Pass Assembly Language (38)
APPENDIX 7 - Operation code Summary (39)

APPENDIX 8 - List of Reserved Words (42)

This document has been produced by Serge Poulard. The opinions expressed in the document
are not necessarily those of the Organization.

BACKGROUND

Present situation

Language

Experience has proven that the Redatam language is confusing for users. It looks like a procedural
language: FOREACH, WRITE and an object oriented language: DEFINE, FREQUENCY, AVERAGE etc...
The FOREACH command is difficult to understand and use without any surprises! There are no external
functions.

Database content
The statistical processor is limited to the data originally created by the system itself (BIN files). Any data
must be imported into the Redatam database prior to its use.

Database Variables ’
Only “stored on disk” variables are available. The concept of “Computed” variables is not available.

Output

¢ The link with GIS needs an intermediate process

¢ There is no way to create a “selection set” from a statistical process.

e Stored data cannot be easily browsed

* The bridge to other system (SPSS, Lotus) is not supported for recent versions of these systems.

winR+ implementation

The adaptation of the DOS version of the statistical engine requires a full understanding of the software.
This obvious statement implies a tremendous investment in time. Up to now, maintenance has been made
on a “bug has been found” basis without the control over the entire process. The implementation of new
features such as the access to external data source would be extremely difficult if not an impossible job
taking into account the human resources of the CELADE infopal Area.

Proposal for improving the situation

Language

e The number of commands is reduced to a minimum and (hopefully) the language has now a clear
object oriented approach

* New functions are incorporated in the language. Furthermore, the architecture of the implementation
allows for an easy extension of the language.

¢ Variable definitions can be stored in the database dictionary. A definition can be called back by a
simple reference, thus making the concept of “Computed Type” part of the database dictionary.

* Selection sets can be defined at run time (computed) or defined through LINK files or previously
defined SELECTION files

Output
e Output can be directed immediately to a database file. This avoids the GENERATE process of the
DOS version.

» Selection sets can be automatically generated and stored in the user's workspace.

Processing

o Data from an other source may be processed as such in the database. We plan to support xBase and
Microsoft ACCESS formats.

¢ The statistical processor execute an “assembled” program. The main task is executed by the syntaxis/
semantic analysis module that generates the code for a virtual machine. This approach opens the way
for remote execution of the process and easy transportability of the system.

Maintenance
This is our main concern. The software is modularized and technically documented for the purpose of
maintenance and extension of its functionality.

COMMANDS

1. Overview

In addition to the RUNDEF command that define the run environment and which is unique in a command
set, only two commands are necessary to perform winR+ a retrieval process: DEFINE and TABLES. A
command may expand to several lines.

RUNDEF specifies the general environment of the statistical process. DEFINE declares non dictionary
stored variables referred to in the command set and TABLE declares the required output.

Command summary

RUNDEF <runid1>
RUNTITLE <vardef>
SELECTION <selectionset>
UNIVERSE <boolean_expr>
RUNSELECT <CASES | SAMPLE > <number> <entid1> [FROM <entid2>]
PRINTCODE [< ALL | NONE >] [SOURCE] [PASS1] [PASS2] [PARSE] [MAP]
OUTPUT [ASCIHI [FILENAME <filename>]] | PRINTER
USERID <userid > < password >

DEFINE <varid1>
AS <vardef>
FOR <logical_expr>
TYPE <vartype>
RANGE <range_list>
NOTAPPLICABLE <range>
MISSINGVALUE <range>
VARLABEL <string>
VALUELABELS <valuelabel_list>
[LIKE <varid2>] (ignored in this version)

TABLE <tableid>
AS <tabletype>
OF <varid_list1> [BY <varid_list2> [BY <varid_list3> [BY <varid_list4>]]1]
TITLE <string>
COMPUTEOPTIONS <computeoption_list>
OUTPUTOPTIONS <outputoption_list>
OUTPUTFORMAT <outputoption_list>
PRESENTATIONOPTIONS <presentationoption_list>
AREABREAK <entid_list>

General syntaxis rules

1. Inthe syntaxis description, a list of tokens is indicated by the token trailed by "list". For example,
<varid_list> means a list of <varid>. A list must contain at least one element. Elements are separated
by commas. An element must be enclosed in parenthesis whenever itself is a list (see RECODE
syntax).

2. No abbreviation is allowed to keywords.

3. Any variable referred to in a clause such as FOR or AS must be a variable previously defined, either in
the database dictionary or in a previous DEFINE command of the command set.

4. TABLE replaces AVERAGE, FREQUENCIES, CROSSTABS, TABLES and WRITE of the previous
syntax.

The command description includes the following basic tokens:

<entid> entity identifier of the database entity.

<varid> <entid>.<varidentifier> Please note the dot (".") that indicates the entity
membership.

<string> String constant or string expression.

<stringconstants> String constants must be encoded in between quotes:

“Text string” or ‘Text string’
<arithmetic_expr> Usual arithmetic expression. Please, not that reference to a variable must be
done according to the new <varid> definition. However, arithmetic expression
may include functions (see Appendix Il for supported functions).

<varidentifier> string of 8 characters maximum, the first one being alphabetical.

2. The RUNDEF command

Syntax

RUNDEF <runid1>

TITLE <vardef>

SELECTION <selectionset>

UNIVERSE <boolean_expr>

RUNSELECT <CASES | SAMPLE > <number> <entid1> [FROM <entid2>]
PRINTCODE [< ALL | NONE >] [SOURCE] [PASS1] [PASS2] [PARSE] [MAP]
OUTPUT [ASCIl [FILENAME <filename>]]| PRINTER

USERID <userid > < password >

Clauses

RUNTITLE <vardef> Character string. Run Title heading for every output page.
SELECTION <areaselection> | SELFILE <filename> | LINKFILE <filename> | ALL

<areaselection> area selection as defined in the winR+ workspace
<filename> DOS valid file name

The qualifier SELFILE refers to a traditional REDATAM+ selection file, LINKFILE refers
to a link file as defined by the winR+GIS link tool and ALL refers to the entire database.

UNIVERSE <boolean_expr> Overall selection of data. Evaluated at reading time.

RUNSELECT <CASES | SAMPLE > <number> <entid1> [FROM <entid2>]

PRINTCODE [<ALL|NONE >][SOURCE][SOURCE][PASS1][PASS2 JIPARSE][MAP]
Program output options

<ALL | NONE > Either one of these 2. Any subsequent parameter overrides this clause.

SOURCE Original command set

TABDEF Table expansion

PASS1 First pass assembly code

PASS2 Second pass assembly code

PARSE Parsed command before generating the first pass code*

MAP Map of constants and variables referred to in the command set

* These options will be deactivated in the distributed version

OUTPUT [ASCIl [FILENAME <filename>]1| PRINTER Output medium
ASCII Output in DOS ascii . Minimum formatting takes place
PRINTER Sends output directly to the printer
FILENAME Sends output to the file <filename> in ASCII format

USERID <userid > < password > Used for restricted databases.

Parameters are provided by the database owner or database manager.

3. The

Syntax

Clauses

DEFINE command

DEFINE <varid1>
AS <vardef>
FOR <logical_expr>
TYPE <vartype>
RANGE <range_list>
NOTAPPLICABLE <range>
MISSINGVALUE <range>
LABEL <string>
VALUELABELS <valuelabel_list>
DEFOPTIONS [SAVE] [OVERIDE]
[LIKE <varid2>]

<varid1> Must be a new variable definition
AS <vardef>

This clause defines how the variable is evaluated.

<vardef> [<arithm_expr> |
QUANTIFY <entid> |
<recode_expr> QUANTIFY <entid> |
SUM <varid> |
EXTERNAL <definition>]

<recode_expr> RECODE [<varid> | (<arithmetic_expr)] <recodeitem_list>

Please note that an arithmetic expression in a RECODE expression
MUST BE enclosed in parenthesis.

<recodeitem> [(<range_list> = <integer>) | ELSE <integer>]

<range> Single or couples of integer, string constants or real constants.
Examples:

1-3

1.3

1TO3
LOWEST -3

4 TO HIGHEST
4..HIGHEST

" TO is equivalent to - and can be read ‘ and ail values between’
LOWEST maximum value
HIGHEST minimum value
The symbol “ - " has been kept for upward compatibility reason. it should be replaced by
the mathematical symbol “ .. " which generally used to identify an enumeration.

QUANTIFY <entid> similar to the QUANTIFY command of the previous syntax.

SUM <varid> calculates the sum a variable of a lower entity.

EXTERNAL [OVERRIDE] < DBF|MDB|ASCII|TEXT > <external specifications>

The EXTERNAL qualifier associates a variable from an external source of the winR+ database.
The OVERRIDE clause informs the system that the variable is being re-defined. The external
source specifications depends on the type of the external source:

DBF source files

DBF <xbasefile> [INDEX << indexfilename> | CREATE >]
KEYFIELD <keyname> [UPDATE]

The variable name as specified in the DEFINE must correspond to the field in the dbf file.
If no INDEX is specified, the file is assumed to be “compact’ i.e. that the record
sequence in the file corresponds to the sequence of the selection set. If an INDEX file
name is specified, it must related to the KEY field. The qualifier CREATES provides a
mean to create or re-creates the index at run time.

The KEYFIELD corresponds to the entity code to which belongs the variable.

The UPDATE keyword indicates that the file may be updated during the statistical
process.

Note: Running the statistical process with only DEFINE commands on external source is
a mean to create new variables.

MDB source files

MDB <databasename> <tablename> >
[INDEX < <indexname>| CREATE >]
KEYFIELD <keyname> [UPDATE]

The variable name as specified in the DEFINE must correspond to the field in the MDB
table.

If no INDEX is specified, the table is assumed to be “compact” i.e. that the record
sequence in the table corresponds to the sequence of the selection set. If an INDEX file
name is specified, it must related to the specified KEY field. The qualifier CREATES
provides a mean to create or re-creates the index at run time.

The KEYFIELD corresponds to the entity code to which belongs the variable.

The UPDATE keyword indicates that the file may be updated during the statistical
process.

Note: Running the statistical process with only DEFINE commands on external source is
a mean to create new variables.

ASCIl source file
ASCIl <filename> [DELIMITED WITH < BLANKS | <delimiter>]
[SEQUENCE <sequencenumber>]
TEXT source file
TEXT <filename> [DELIMITED WITH < BLANKS | <delimiter>]

Text files are a special type of ASCI! files that inciudes a header specifying the file
structure.

GIS source file
GIS <filename>

GIS files are a special type of ASCI files that includes a header.

Fixed format source file

FIXED <filename> <position> <size> KEY <keyposition> <keysize>

FOR < boolean _expr>

Restricts the computation. Value is calculated only when the expression true. Otherwise the
variable is assigned the NOTAPPLICABLE value.

A boolean expression is always assigned to a variable of type boolean. The type boolean is
identical to a type integer for which the value -1 is considered equal to TRUE and any other value
is considered FALSE. This is Visual Basic convention. A variable declared as boolean is thus
treated as an integer variable except that it appears to have only two values: TRUE and FALSE.
The user should be aware of this fact ONLY when a FOR clause is evaluated through an
arithmetic expression which is (in my opinion) a suicidal practice.

For example, in the expression X=(24=3*8), X is assigned the value TRUE (or -1)

TYPE <vartype> This clause defines the type of the variable

<vartype> ~ [INTEGER | REAL | BOOLEAN | STRING]

RANGE <range_list>

This clause defines the values the variable can take. From this clause, the minimum and
maximum value are deduced. Although optional, this clause should be used in every definition,
specially when the variable is to be included in a TABLE definition since if the minimum and
maximum value are known before process begins the processing time can be drastically reduced.

NOTAPPLICABLE <range>

This clause define not applicable value of the variable. Please note, that the concept of not
applicable value is a range and not a single value as it was before in the previous REDATAM+
syntax.

MISSINGVALUE <range>

This clause define missing value of the variable. Please note, that the concept missing is a range
and not a single value as it was before in the previous REDATAM+ syntax.

NOT APPLICABLE, MISSING VALUE are processed as the first available out of range value. For
instance, if a variable is defined between o and 9, the missing value will be assigned 10 and not
applicable value will be assigned 11. The user should not bother with these internal assignment,
since these two special categories will never be shown with their numerical values. Please, note
that an out of range value in the stored data is assumed to be not applicable. This facility is
supported for historical reasons. Actually an out of range value is a constraint violation of the
database integrity. These concepts emphasize the importance for the user to have an absolute
control over the database content and consequently, over the importance of the RANGE
definitions. A special TABLE command has been created (see CODEBOOK keyword in
TABLE/AS clause) for the user to check the integrity of the database.

VARLABEL <stringconstant> The variable label

VALUELABELS <valuelabel_list>

A <valuelabel> associates a variable value with a label string. This clause is not mandatory.
Value labels are used by default as captions in TABLE outputs. Please note that several value
may be associated with the same value label. Example:

(1*Male”) (2 “Female”)
(0-15 “Minors”) (16 to HIGHEST “Adults”)

Please note:

1. list does not contain any “,".

2. Ranges may be assigned a value label
[LIKE <varid2>] (ignored in this version)
This clause is an inheritance clause. All attributes of <varid2> are assigned to the currently
defined variable. These attributes include the type, label, ranges and value label. The inherited
attributes may be overridden by an other clause such as LABEL. <variid2> must be a variable

previously defined, either in the database dictionary or in a DEFINE command.

<varid2> is of type <varid>

DEFOPTIONS [SAVE] [OVERRIDE]
SAVE Save the definition in the database directory

OVERIDE Overrides a variable definition of the dictionary. This option applies only for
computed variables
Notes:

As suggested, we are studying the possibility to include the valuelabel definition within the syntax
of a RECODE statement. The proposal would look like:

RECODE oldvar (1-3,5 = 1 ‘POOR’) (4=2 'MIDDLE CLASS') (6-8 = 3 ‘RICH)

Examples

The following examples of DEFINE commands assumes the existence in the database dictionary
of the entities “ed”, "hhold" and "person”. The variables "sex", “age”, “activity” and "relat" are
members of the entity "person” and the variables “water”, “elect” and “rooms” are members of the

entity “hhold”. Indents have no semantic signification and should be used to clarify the
presentation.

(Note: the continuation sign *;’ does not seem to be necessary. However, in the first stage it bioody
simplifies the programming. | shall what | can do....)

1. Defining the sex of household head:

DEFINE hhold.sexhh AS person.sex FOR person.relat = 1
LIKE person.sex RANGE (0-3) VALUELABEL 0 "Missing Value"

2. Defining dependents by age groups:

DEFINE person.activeagegroup
AS RECODE person.age (0-14=1) (15-65=2) ELSE 3
TYPE INTEGER RANGE (1-3) LABEL “Age Group”
VALUELABELS 1 "Dependent children”
2 "Active adults"
3 "Dependent adults"

Note: The TYPE clause would not be required if we assume the RECODE returns an integer. But what
about recoding to a decimal variable.

3. Defining household by presence of male children:

DEFINE hhold.malechildren
AS QUANTIFY person ;
FOR person.age <= 15 AND person.sex = 1
TYPE INTEGER
DEFINE hhold.malechildrenpresence
AS RECODE person.malechildren (0 = FALSE) ELSE TRUE
TYPE BOOLEAN
VALUELABEL FALSE "No male children" TRUE "Male children present”

4. Computing an index of poverty at ed level

DEFINE hhold.waterindex AS RECODE hhold.water (1-2=1)ELSE 0
DEFINE hhold.powerindex AS RECODE hhold.elect (1-2,4=1) ELSE 0
DEFINE hhold.overcrowd

AS RECODE (COUNT(person) / hhold.rooms) (0-2.3=1) ELSE 0
DEFINE hhold.active AS QUANTIFY person

FOR person.activity IN (1-2,7,9) ‘New logical operator
DEFINE hhold.depratio

AS RECODE (hhold.active / COUNT(person)) (0.5 TO HIGHEST=1) ELSE 0
DEFINE hhold.index

AS hhold.overcrowd + hhold:waterindex + hhold.power + hhold.depratio
DEFINE ed.index AS SUM (hhold.index)/COUNT(hhold)
DEFINE ed.indexclass AS RECODE ed.index (0-1=1) ELSE 2

Note: The function COUNT returns the total number a instances of the specified entities belonging to
the current variable entity. The QUANTIFY command does the counting as the process goes on.
The returned value by a COUNT is the same as the QUANTIFY if no FOR clause modifies the
counting.

10

5. Average age of person in a entity

DEFINE ed.agem AS SUM(person.age)/COUNT(person)

Implementation notes

Whenever defined through the winR+ dictionary management, the variable definition may be saved
permanently in the dictionary (note: a SAVE clause in the command set could also be made available)
Whenever referred to later a variable definition will automatically be loaded into the command set as a
DEFINE statement. prior to its first reference. The user should always be aware that the order of
appearance of the DEFINE command is important since any DEFINE command cannot refer to any
undefined variable. '

Definition of actual variables (by opposition to Computed variables), i.e. variables whose values have
been actually stored on disk should not be changed or if so, extreme care should be taken doing so
(note: an OVERIDE clause could be implemented to avoid errors)

1"

4. The TABLE command

Syntax

TABLE <tableid>
AS <tabletype>
OF <tablegroup>
TITLE <string>
COMPUTEOPTIONS <computeoption_list>
OUTPUTOPTIONS <outputoption_list>
OUTPUTFORMAT <outputoption_list>
PRESENTATIONOPTIONS <presentationoption_list>
WEIGHT <arith_expr>

Clauses

<tableid> <string>.

Table group identifier. Actually a TABLE command may represent a group of
table depending on the OF clause that may imply several tables. In this case
each table is identified as an element of an array of tables, the first being
tableid(1), the second tableid(2) etc... The identification is made from left to
right.

For example, in the command
TABLE mytable AS CROSSTABS OF v1, v2 BY v3, v4
mytable(1) corresponds to v1 BY v3
mytable(2) corresponds to v1 BY v4

mytable(3) corresponds to v2 BY v3
mytable(4) corresponds to v2 BY v4

Note: A list of variables may be enclosed in parenthesis in order to improve clarity:

TABLE mytable AS CROSSTABS OF (v1, v2) BY (v3, vé)

AS [FREQUENCY | AVERAGE | CROSSTABS | DISTRIBUTION | AREALIST]
OF <tablegroup>

A table group syntax depends on the type of table required (see AS clause). The
following tables describes each case:

AS clause OF clause syntax

FREQUENCY <varid_list> [AREABREAK <entid_list>]
AVERAGE <varid_list1>[BY <varid_list2> [BY ... [BY ..
CROSSTABS <varid_list1> BY <varid_list2> [BY ...[BY .
DISTRIBUTION <varid_list> (*)

AREALIST <entid> [, <varid_list>] (*)

CODEBOOK <varid_list> [UPDATE]

] [AREABREAK <entid_ist>]

1]
.. 11 [AREABREAK <entid_[ist>]

12

The DISTRIBUTION clause list by area the values of a variable. This clause replaces the CROSSTAB of
the previous syntax that involved an entity. Only variables of TYPE integer may be declared.

The AREALIST clause produces a list by entity of a set of variables members of the entity. All variables
must be members of the same entity. This command is used to extract data from the database and move
it to a foreign system.

The CODEBOOK clause is used mainly to get a variable description, inciuding the range of the variable.
The UPDATE qualifier corrects eventual consistencies related to the variable.

WEIGHT <arith_expr>

Weight of every count in the tabulation process.

13

THE STATISTICAL PROCESSOR

1. Overview

A statistical process is dynamically similar for every case of information retrieval. It is mainly a loop
(database retrieval main loop) through all the selected database areas (not necessarily geographic) and as
this recurrent process goes along, information is picked up from permanent storage, new data is computed
and assembled in output items. At the end of this loop, the output formatting takes place. The new
statistical process is assembled as a program with specific instructions run by an executor that acts as a
virtual computer processor.

The main stages of the statistical process are:

the syntaxis and semantic analysis of the user's code
the assembly of the environment and the program code
the execution of the database main loop

the output formatting

The function of syntaxis/semantic analysis of the DEFINE and TABLE commands is to provide the
statistical process with all the data elements that have to be taken care of in the process:

constants
entities
variables
output items

When no error has been encountered, the process provides all the assembly of the “first pass” code for
computing the variables. This is mainly the code to be grafted on the database retrieval main loop.

The assembly of environment and the program code prepare the program assembly code and the
memory mapping of data items to be processed. It performs its task in two passes. The first pass
generates the first version of the program at the level of macro instructions. The second pass generate the
actual “executable’ code. The first pass code contains macro-instructions of the memory mapping and the
program itself. The program is built from the database retrieval main loop describe below.

The database retrieval main loop is the skeleton onto which the user's specific requirements such as

variable calculations and tabulations are grafted. This skeleton reflects the database structure. For
example a database with the following structure:

0. Entity0

L 1 .Entity1

1.1 Entity2
1.2 Entity3

1.2.1 Entity4

| 2. Entity5

2.1 Entity6

14

would correspond to the following retrieval main loop:

Start Loap Entity0
Start Loop Entity1
Start Loop Entity2

End Loop Entity2
Start Loop Entity3
Start Loop Entity4

End Loap Entity4
End Loop-Entity3
End Loop Entity1
Start Loop Entity5
Start Loop Entity6

End Loop Entity6
End Loop Entity5
End Loop Entity0

The pseudo-code Start Loop and End Loop represents markers of a loop processing. Each loop should be
replaced by the following pseudo-code:

Start Entity Loop:

* Initialize entity related temporary variables (if any)
* Initialize pointers of variables to be read (if any)

¢ Do

Read set of entity variables (if any)

e Performs computations related variables of entity (pre process if any)

Select Case CurrentSelectedEntity
Case Ent1
Start inner loop1 of entity Ent1
Eﬁa'iﬁ.ﬁéruloop 1 of entity Ent1
Case Ent2

Start inner loop 2

End inner loop 2

End Select

s Performs computations related variables of entity (post process if any)
¢ Performs tabulations (if any)
¢ Performs intermediates output such as AREABREAK (if any)

Until end of area

End Entity Loop

¢ The Loop control is driven by the start and end of the current processed area. The loop is built on a
DO/UNTIL scheme. Is assumed that at least one area exists.

¢ The code generated includes only the referenced entities, i.e. entities that are explicitly referred to such
as in TABLE/AREABREAK or TABLE/AREALIST or through the reference of any variable appearing in
a DEFINE or TABLE command.

¢ The Select Case structure selects the lower entity of the current selected sub area

15

The database main loop is executed for each area selected by the user in the SELECTION clause.

Initialize selected area List
Do
Read next selected area
Process main loop
Until end of selected area list

16

2. Syntaxis/semantic analysis

This module major function is to check the syntaxis and semantic of the user's code, provide error
eventually and generate the first pass assembly code.

The first step is taken care of by the module wrpDEFTABCompile. This module isolates commands and
clauses and update the VarDefs() and TabDefs() arrays as well as the list of variables and constants
involved in the process (see Global String Array Storage()) and the necessary first pass code to compute
all expressions involved in the commands as well as the database main loop (see Global String Array
GenProg()).

Program is assembled in first pass language assembly (see Appendix 5 and Appendix 7).

Call

Flag = wrpDEFTABCompile (DefTab$, RunDef As WRPRUN, VarDefs as WRPDEFINE,
TabDefs as WRPTABLE, ErrorMess$)

Parameters

Flag is True when no error has been encountered, False when an error has been encountered.
DefTab$ user's command set.

RunDef definition parameters

VarDefs() contains the parsed DEFINE commands

TabDefs() contains the parsed TABLE commands

ErrorMess contains an error message or blank if no error

Syntax error report may be printed. Any error in a clause will be mentioned with the clause
replaced with %nnn (error number) followed by the error message related to the clause.
Whenever an unrecognized command or clause is encountered, scanning stops and the ErrMess$
contains the error message.

Programming notes

First, this routine isolates the commands, then calls three main modules for each case:
wrpDefTabRUNDEF, wrpDefTabDEFINE, wrpDefTabTABLE. if no error has interrupted the process, the
main loop is assembled by wrpASSEMBLELoop. The last step is executed by wrpGENERATECode. This
routine assemble the “executable” version of the program. It also checks the execution parameters such
as the availability of database files.

Global Arrays

Storage()

GenProg()

VarDefs() type WRPDEFINE (see below)
TabDefs() type WRPTABLE (see below)

17

Structures

Type WRPRUN
CommandSet As String
Exist As Integer
Command As String
Error as Integer
LineNumber As Integer
NLines As Integer
Jobld As String
TITLE As String
SELECTIONClause As String
UNIVERSECIause As String
RUNSELECTClause As String
PRINTCODECLause As String
OUTPUTClause As String
USERIDClause As String
PRINTCODEANY As Integer
PRINTCODESOURCE As Integer
PRINTCODEMAP As Integer
PRINTCODEPARSE As Integer
PRINTCODEPASS1 As Integer
PRINTCODEPASS2 As Integer
OUTPUTTYPE As String
OUTPUTFILENAME As String
End Type

Type WRPDEFINE
Command As String
LineNumber As Integer
NLines As Integer
Error As integer
Varld As String
VarName As String
EntName As String
ASClause As String
FORClause As String
TYPECtause As String
RANGECIause As String
LabelClause As String
VALUELABELSClause As String
LIKEClause As String
NOTAPPLICABLEClause As String
MISSINGVALUECIause As String
ASTYPE As String
ASEXPR As String
ASEXPRCODE As Integer
ASPARAM As String
ASPARAMCODE As Integer
PREPROCESSING As Integer
Dependency As String
COMPUTATIONLEVEL As String
End Type

18

Type WRPTABLE
Command As String
Error As Integer
LineNumber As Integer
NLines As Integer
Tableld As String
ASClause As String
OFClause As String
LABELClause As String
COMOPTClause As String
OUTOPTClause As String
PRESOPTClause As String
WEIGHTClause As String
TABLETYPE As String
AREABREAKCIause As String
DIM1 As String
DIM2 As String
DIM3 As String
DIM4 As String
TOTDIM As Integer
COMPUTELEVEL As String
ALLGROUPS As String
OUTPUTLEVEL As String
End Type

Error Messages

Messages returned in ErrorMess$

000 Empty command set

001 Unexpected "'

002 Unrecognized command name
003 Unexpected continuation character

005 lllegal variable identifier"

006 No variable definition”

007 Missing AS Clause”

008 Cannot re-define a dictionary variable"

008 Variabie already defined"

010 Reference to an unknown entity"

011 Reference to an unknown entity in an AS/QUANTIFY clause"
012 Syntax Error in an AS/RECODE clause"

013 Expected variable identifier in an AS/RECODE clause”
014 Expected variable identifier in an AS/RECODE clause"
016 lilegal variable name found in an AS/RECODE clause”
017 lliegal type declared in a TYPE clause”

018 lilegal string declaration in a LABEL clause"

019 lllegal variable name found in an LIKE clause"

020 Error in an AS/RECODE list"

021 Error in an AS/RECODE expression"

022 Error in an AS/RECODE range affectation list"

023 Error in an AS expression"

024 Error in a FOR clause”

025 Reference is made to an entity of a different branch
026 Reference is made to an illegal entity in a QUANTIFY clause
027 Reference is made to lower entity in computation

201 Unbalanced parenthesis in expression"
202 Left side of a 'TO' key word is missing”
203 Right side of a 'TO' key word is missing”
204 Right term of '+' is missing"

205 Right term of *-' is missing"

206 Missing term in a range affectation”

207 Multiple range affectation operator"

208 Missing element in a list"

209 Missing left term of " & OpCode

210 Missing right term of " & OpCode

211 Missing right term of " & OpCode

212 Unexpected left term of an ELSE keyword"
213 Missing right term of an ELSE keyword"

20

3. Execution loop

Call

a————

Function wrpExecute (Main_Entry as Integer, ErrorMess as string)

Parameters
[To be included in a later version of this working document).

Variables
[To be included in a later version of this working document].

21

Structures

Type WRPVARIABLE
VarName As String
EntName As String
Type As String INTEGER | STRING | BOOLEAN
Location As String 'DISK | COMPUTED

Label As String
Documentation As String

Branch As integer

Position As Integer 'Field Position for ASCI| files
AsciiSize As Integer 'Size in ascii representation
Size As Integer ‘Depends on the type
Decimals As Integer

Level As Integer

NotApplicableValue As String

MissingValue As String

VarNumber As Integer

Database As String ‘database name or directory
DatabaseType As String 'ASCII DBF MDB RPLUS
StreamName As String ‘table name or file name
Categories As Integer

Security As String level of security

Definition As String 'Dynamic definition of variable

Dependency As String
CurrentSlot As Long
LValue As Long
DValue As Double
SValue As String
WindowSize As Integer
WindowsInBuffer As Integer
LeftWindow As Long
Buffer As String

End Type

Dim VarArray() As WRPVARIABLE

22

Type WRPENTITY
EntName As String
Label As Integer
EntCodeProfile As String
EntNumber As Integer
EntPos As Integer
EntSize As Integer
Branch As Integer
Level As Integer
Preorder As Integer
Parent As Integer
Child As Integer
Brother As Integer

Database As String 'database name or directory
DatabaseType As String 'ASCII DBF MDB RPLUS
StreamName As String ‘table name or file name
RefCode As String

RefLabel As String
Security As String
CompoundedCode As String
StartSlot As Long
NumberOfSlot As Long
CurrentSiot As Long

End Type

Dim EntArray() As WRPENTITY

23

Definition of a frequency table

Type WRPTABLEFREQ
TABLEID As String
TABLETYPE As String
TITLE As String
OUTOPTClause As String
PRESOPTClause As String
IFWEIGHT as Integer ‘TRUE if variable has a weight
WEIGHT as Integer ‘Variable index in VarArray (refers to the variable weight)
VARINDEX as integer ‘Variable index
MEMOBANK as integer ‘One of the 4 arrays that contains data
OFFSET as Long ‘Offset of the table in MEMORYBANK
End Type

Expansion of instruction TAB_FREQ

wewawr Cell index computation ***s#sswwwses el

Tbindex = Prog(PCounter+1)

Varlndex = FreqArray(Tbindex).VARINDEX

Cellindex = VarArray(Varindex).LValue + FreqArray(Tbindex). OFFSET

+++ Bank n Affectation *rsseessessaers
MEMOBANK1(Cellindex) = MEMOBANK1(Cellindex) + 1

Note:

In this example the tabulation array had been set to MEMORYBANKA1
Cellindex is a register variable of the execution engine

e Virtual memory affectation
VIRTUALMEMO

Type WRPTABLEFREQ
Tableld As String
TABLETYPE As String
TITLE As String
OUTOPTClause As String
PRESOPTClause As String
WEIGHT as Integer ‘Variable index in VarArray (refers to the variable weight)
DIM1 As integer ‘Table dimensions DIM1 to DIM4
DIM2 As integer ' According to the total number of dimension
DIMS3 As Integer ‘index is computed
DIM4 As Integer
VARDIMO as integer ‘Variable index
VARDIM1 as integer
VARDIM2 as integer
VARDIM3 as integer
VARDIM4 as integer

MEMOBANK as integer ‘One of the 4 arrays that contains data
OFFSET as Long ‘Offset of the table in MEMORYBANK
End Type

24

TAB_X1

Tbindex = Prog(PCounter+1)

Varindex1 = TabArray(Tbindex).VARDIM1

OffSetVar = TabArray(TbIndex).DIM1 * (VarArray(Varlndex1).LValue—1)

Varindex2 = TabArray(Tbindex).VARDIM2

Cellindex = VarArray(Varlndex2).LValue + OffSetVar + TabArray(Tbindex).OFFSET
MEMOBANK1(CeIIIndex) = MEMOBANK1(CeIIIndex) +1

TAB_X2, TAB_X3, TAB_X4

AVG_X0
AVG_X1
AVG_X2
AVG_X3
AVG_X4
DISTRIB

25

Loop Structure

Pcounter = Main_Entry
Do While Pcounter > 0
OpCode = Prog(PCounter)
Select Case OpCode
Case ...

Case

Case STOPRUN
Pcounter =0
Ens Select
Loop
If PCounter > 0 Then
wrpExecute = True
Else
wrpExecute = False
Endif
Exit Function

4. Output processing

[To be included in a later version of this working document].

26

THE IMPLEMENTATION SCHEME

The new language will be implemented in two ways
e Commands will be entered as a text file.
¢ Commands will be form driven.

In both case, drag and drop facilities will be provided to facilitate the entry.

27

APPENDIX 1 - Old vs New syntax

Example 1

R+ syntax

winR+ syntax

Example 2

R+ syntax

winR+ syntax

Example 3

R+ syntax:

winR+ syntax

SELECTION filename

RECODE AGE TO AGEGROUP (0-14=1)(15-65=2) ELSE 3
FREQUENCY AGEGROUP

IF AGEGROUP = 1 THEN CROSSTABS AGEGROUP BY SEX

RUNDEF Example SELECTION SELFILE filename
DEFINE person.agegroup AS RECODE person.age (0-14=1)(15-65=2) ELSE 3
TABLE FREQ1 AS FREQUENCY OF person.sex
TABLE CROSS1 AS CROSSTABS OF person.agegroup BY person.sex ;
FOR person.agegroup = 1

SELECTION filename
DEFINE HHOLD TOTPERS
FOREACH HHOLD
QUANTIFY PERSON TO TOTPERS
IF AND TOTPERS > 4 THEN RELATION = 1 THEN COMPUTE
SEXHEADOFHOUSEHOLD = SEX
END
FREQUENCY SEXHEADOFHOUSEHOLD

RUNDEF Example SELECTION SELFILE filename

DEFINE hhold.totperson AS QUANTIFY person

DEFINE hhold.sexofhhhead AS person.sex FOR person.relat = 1

TABLE freq1 AS FREQUENCY OF hhold.sexofhhhead FOR hhold.totperson > 4 ;
LABEL "Sex of household head with more than four persons

DEFINE REAL HHOLD MINORRATIO

DEFINE HHOLD TOTPERSON, TOTMINOR

FOREACH HHOLD
QUANTIFY PERSON TO TOTPERSON
COMPUTE SEXHEADOFHOUSEHOLD = 0
IF SEX = 1 THEN COMPUTE SEXHEADOFHOUSEHOLD = SEX
IF AGE < 15 THEN QUANTIFY PERSON TO TOTMINORS
COMPUTE MINORRATIO = TOTMINORS/TOTPERSON

END

AVERAGE MINORRATIO BY SEXHH

DEFINE ed.minorratio AS RATIO(person) FOR person.age < 15

DEFINE hhold.sexheadofhousehold AS person.sex FOR person.relat = 1
TABLE indic1 AS AVERAGE OF segmento.minorratio BY hhoid.sexheadofhousehold

28

APPENDIX 2 - List of language constants, operators & available functions

Constants

PI 3.14159265358979323846
e 2.71828182845904523536

TRUE -1
FALSE 0

Artithmetic operators
+-Y/\VAMOD &

Relational operators
>= <= = > <«

Logical Operators
NOT OR AND

Set operator
IN <litem_iist>

Mathematical Functions

ARCSINH (<arithmetic_ expr >)
ARCTANH (<arithmetic_ expr >)
ARCCSCH (<arithmetic_ expr >)
ARCSIN (<arithmetic_ expr >)
ARCSEC (<arithmetic_ expr>)
ARCCOT (<arithmetic_ expr >)
TANH (<arithmetic_ expr >)
CSCH (<arithmetic_ expr >)
SEC (<arithmetic_ expr >)

COT (<arithmetic_ expr >)

COS (<arithmetic_ expr >)

ATN (<arithmetic_ expr >)

EXP (<arithmetic_ expr >)

CLG (<arithmetic_ expr >)
FACT (<arithmetic_ expr >)
TODAY%

String Function
STR (<arithmetic_ expr >)

TODAY$

REDATAM specific functions

ARCCOSH (<arithmetic_ expr >)
ARCSECH (<arithmetic_ expr >)
ARCCOTH (<arithmetic_ expr >)
ARCCOS (<arithmetic_ expr >)
ARCCSC (<arithmetic_ expr >)
SINH (<arithmetic_ expr >)
SECH (<arithmetic_ expr >)
COTH (<arithmetic_ expr >)
CSC (<arithmetic_ expr >)

SIN (<arithmetic_ expr >)

TAN (<arithmetic_ expr >)

LOG (<arithmetic_ expr >)

SQR (<arithmetic_ expr >)

ABS (<arithmetic_ expr >)

VAL (<string_expr>)

RECODE (<arithmetic_expr>) <recode_|ist>

COUNT (<entid>)

(Author’s Note: | don’t know who (the hell) is going to use ARCSINH in a

have put it here for the sake of the theoretical exercise)

29

REDATAM command set, but |

APPENDIX 3 - Error Messages Summary

[To be included in a later version of this working document].

30

APPENDIX 4 - Internal structures

Structures

Type VARIABLEDEF

VarName as string
Entity as string
Type as integer
ValueS as string
ValueD as double
Valuel as Long

RangeMin as single
RangeMax as single

LineNumber as Integer
As as string

AsProg as integer

For as string

ForProg as integer

LabelPointer as integer
ValueLabelStart as integer
ValuelLabellLen as integer
End type
Type ENTITYDEF

End Type

Type OUTPUTTABLEDEF

End Type

Type SELECTIONAREA
TotalNumber as integer

Current as integer

End Type

Variable identifier
Entity to which the variable belong to
Type of variable

Line number in the user's command set
As clause as defined by the user

Index of the expression calculation

For Clause as defined by the user
Index of the expression calculation

Pointer to StringArray()

Pointer to StringArray() of first Valuelabel
Number of Value Labels

31

Variables and Constants

Constant
SPC_DEFINE
SPC_TABLE

o
N =2

Variables

NSPCLine as Integer
SPCLine() as String

Number of commands
Command text

SPCComType() as Integer Command type (SPC_DEFINE, SPC_TABLE)

NStringArray as Integer
StringArray() as String

NBVarDef as Integer

BVarDef() as VARIABLEDEF

NLVarDef as Integer

LvarDef() as VARIABLEDEF

SRegister() as Single
Dregister() as Double
IRegister() as Integer
LRegister() as Long
Sregister() as String
Cregister() as Long

Length of string array
General purpose string array to store string members

Number of loaded dictionary variables
Array of dictionary variables

Number of locally defined variables
Array of locally defined variables
Register array of type Single

Register array of type Double
Register array of type Integer
Register array of type Long

Register array of type String

Register array of type counter

32

APPENDIX 5 - First Pass Assembly Language

Area selection instructions
£1=d selection instructions

INIT_AREA_LIST
READNEXT_AREA

Entity related instructions

INIT_ENT_LOOP

address

<entid1>,<entid2>

READNEXT_ ENT <entid>, address
Variable related instructions
READINIT_VAR <varid>
READNEXT_VAR <varid>
COMPUTE_FOR_VAR <varid>
JMP_ON_FALSE <varid >, address
COMP_RECEXPR <varid>
COMP_REC_RANGE <varid>
COMP_QTFY <varid>
MOVEVALUE

COMP_SUM

COMP_EXPR

Tabulation related instructions
—2duation related instructions

COMPUTE_FOR_TAB
JMP_ON_FALSE

<tabidelement>

<tableidelement>
<tableidelement>
<tableidelement>
<tableidelement>
<tableidelement>
< tabidelement >
< tabidelement >

TAB_FREQ
TAB_X1 to TAB_X4

AVG_X0 to AVG_ X4

DISTRIB

OUTTAB_FREQ
OUTTAB_X2 to OUTTAB_X4
OUTAVG_X0 to OUTAVG_ X4

OUTDISTRIB <tableidelement>
OUTAREALIST <tableidelement>
OUTCODEBOOK <tableidelement>

Other instructions

ENTRY
NOOP
STOPRUN
RTJ

JMP

<define_id>

This first pass assembly code is the source for
code. Each operation is expanded in a linear way.

<tabidelement>, address

‘Initialize reading of area selection”
‘Read next area, if not at end, jump to address

‘Initiate reading of child entity entid2 in entity1 loop
‘Skip to next entity, jump to address if OK

‘Load next variable value from disk into memory
‘Load next variable value from disk into memory
‘Evaluate FOR expression for a variable

‘Jump to address if FOR is FALSE

Compute DEFINE/AS clause expression
Compute DEFINE/AS clause expression
Compute DEFINE/AS clause expression

‘Evaluate FOR expression for a variable
‘Jump to address if FOR is FALSE

‘Save table element output

‘No operation, identify entry point

‘No operation, used to specify branch address
‘End of program

‘Return jump to a procedure

generating the second pass assembly code or ‘executable’

33

APPENDIX 6 - Second Pass Assembly Language
Operation code expansion

Eirst pass code Expansion
INIT_AREA_LIST INIT_AREA_LIST

READNEXT_AREA READNEXT_AREA

INIT_ENT_LOOP INIT_ENT_LOOP
READNEXT_ ENT READNEXT_ENT
READINIT_VAR OPENBINFILE
READNEXT_VAR READBINLONG
READBINREAL

READBINSTRING

COMPUTE_FOR_VAR
JMP_ON_FALSE
COMP_RECEXPR
COMP_REC_RANGE
COMP_QTFY
MOVEVALUE
COMP_SUM
COMP_EXPR

COMPUTE_FOR_TAB
JMP_ON_FALSE

TAB_FREQ

TAB_X1 to TAB_X4
AVG_X0 to AVG_X4
DISTRIB
OUTTAB_FREQ
OUTTAB_X2 to
OUTTAB_X4
OUTAVG_X0 to
OUTAVG_X4

OUTDISTRIB

OUTAREALIST
OUTCODEBOOK

Other instructions

ENTRY
NOOP
STOPRUN
RTJ

JMP

Wrdevede e de e de e e e ok
et e o e e e o
PR de sk e e de v v e e
Wl de e v sk ek ske A dr e ok

el A At e e o drde ok

Fededevede e Wi A e A e

P e v el o e e e e e ek

Wl e e e e e dr ok

WA s e s A e e e e e e

CELLCNT_FREQ

TABMBx

Aede e de e dele e v e s e deole-
Vere s e iy de de e dr ek
e dede s e de s v e e e e i

Wdedede dr sl v dr e e de s
Aeedevevie e devk dede e dedede
i de e de de v o e e v ke e ok

Fededevhe ve v ke vl v e v e e e
VA de el I e de ke

YRR A el e A e W e

ENTRY
NOOP
STOPRUN

WA e de v e e e e o

JMP

34

APPENDIX 7 - Operation code Summary

Symbols:
paddress integer value representing the program painter in GenProg()
group operation group 1: first pass assembly, 2: second pass assembly

value Group Mnemonic Syntax Comments

0 12 NOOP

1 12 RET

2 JMP paddress , Unconditional jump

3 RTJ paddress Return jump

4 READV

5 LDXL

6 LDXD

7 LDXB

8 LDXS

9 MOVX

10 STXL

11 STXD

12 STXB

13 STXS

14 REC

30 MULT

31 DIv

32 IDiv

33 MDLO

34 ADD

35 SuBs

36 ADDO

37 SUBO

38 GT

39 LT

40 GE

41 LE

42 EQ

43 ANDOP

44 OROP

45 EXPN

46 RANGE

47 RANGEDEF

48 STOPRUN

35

value

109

110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129

130
131
132
133

Group Mnemonic Syntax

INIT_AREA_LIST
READ_NEXT_AREA
INIT_ENT_LOOP
INIT_CHILDENT_LOOP
READ_NEXT_ENT
READ_NEXT_VAR
COMPUTE_FORV
COMPUTE_FORT
COMPUTE_REC_EXP

CON_COMP_REC_RANGE
UNC_COMP_REC_RANGE

TABULATE
OUTABLE
MOVEVALUE
ENTRY

CON_COMP_EXPR
CON_COMP_REC
CON_COMP_QTFY
UNC_COMP_EXPR
UNC_COMP_REC
UNC_COMP_QTFY

ARCSINH
ARCCOSH
ARCTANH
ARCSECH
ARCCSCH
ARCCOTH
ARCSIN
ARCCOS
ARCSEC

ARCCSC
ARCCOT
SINH
TANH
SECH
CSCH
COTH
SEC
CcsC
CcoT

SINF

COSF
TANF
ATNF
LOGF
EXPF
SQRF
CLGF
ABSF
NOTF

FACT

<varid>
<varid>
<varid>
<varid>
<varid>
<varid>

Comments

C/Compute DEFINE/AS clause expression
C/Compute DEFINE/AS clause expression
C/Compute DEFINE/AS clause expression
Compute DEFINE/AS clause expression
Compute DEFINE/AS clause expression
Compute DEFINE/AS clause expression

VALI ‘conversion string to integer
VALL conversion string to integer
VALD ‘conversion string to integer

36

RECODE operation

PCounter RECODE
PCounter+1 <rangedefid >

Type WRPRANGEDEF
RangeType
RangeDefaultType
OffSet
Size
DefaultL
DefauitD
Defaults

End Type

RangeDefArray()

Type WRPRANGE
RangeOperation
LValueMin
LValueMax
DvalueMin
DValueMax
Label
LRange
DRange
SRange

End Type

RangeArray()

Long, String or Double

1: Keep original Value, 2: Take Value defined
Index in Range array

Total number of Ranges

1: Min to Max 2: Min is open 3: Max is open 4:Single value

37

APPENDIX 8 - List of Reserved Words

[To be included in a later version of this working document].

38

