GUIA PARA LA IDENTIFICACION Y FORMULACION DE PROYECTOS DE VIALIDAD URBANA

Vilma Azócar
DIRECCION DE PROYECTOS Y PROGRAMACION DE INVERSIONES

Distr.
LIMITADA

LC/IP/L.131
22 de febrero de 1997

ORIGINAL: ESPAÑOL

GUIA PARA LA IDENTIFICACION Y FORMULACION
DE PROYECTOS DE VIALIDAD URBANA

Vilma Azócar *

* Consultora de la División de Proyectos y Programación de Inversiones del ILPES. Las opiniones expresadas en este documento, que no ha sido sometido a revisión editorial, son de la exclusiva responsabilidad del autor y pueden no coincidir con las de la Organización.

97-6-403
ÍNDICE

Resumen .. v

Prólogo ... vii

Introducción .. 1

1 Aspectos generales ... 3
 1.1 La importancia de una buena identificación, preparación y evaluación 3
 1.2 Ciclo de los proyectos ... 4
 1.2.1 Estado de preinversión ... 6
 1.2.2 Estado de inversión ... 9
 1.2.3 Estado de operación .. 9
 1.3 La evaluación de los proyectos 10

2 Identificación del proyecto ... 13
 2.1 Tipo de problema .. 13
 2.2 Identificación y definición del problema ... 13
 2.2.1 Instrumentos y técnicas para identificar proyectos en el sector vialidad urbana 14
 2.2.2 Descripción del problema 15
 2.3 El árbol del problema .. 15

3 Diagnóstico de la situación actual 21
 3.1 Necesidad del diagnóstico .. 21
 3.2 Definición del área de estudio y del área del influencia 22
 3.3 Determinación de la demanda actual .. 23
 3.3.1 Conteos de flujos .. 23
 3.3.2 Tasas de ocupación ... 31
 3.3.3 Encuestas Origen-Destino 33
 3.4 Determinación de los tiempos de viaje actuales 36
 3.5 Proyección de la demanda .. 37
 3.6 Determinación de la oferta actual 38
 3.6.1 Capacidad de una vía 39
3.6.2 Determinación del grado de congestión y de la capacidad de reserva de una vía .. 44
3.6.3 Características geométricas de la vía .. 44
3.6.4 Carpeta de rodado de la vía en estudio .. 45

4 Identificación y definición de alternativas de solución .. 47
4.1 Optimización situación actual .. 47
4.2 Identificación de las alternativas de proyecto .. 52
 4.2.1 El árbol de objetivos .. 53
 4.2.2 Definición de alternativas de solución .. 56
4.3 Descripción de las alternativas .. 58

5 Evaluación de las alternativas de proyecto .. 61
5.1 Identificación y cuantificación de los beneficios de cada alternativa. .. 61
 5.1.1 Ahorros en tiempo de viaje .. 62
 5.1.2 Ahorros en costos de operación .. 63
5.2 Identificación y cuantificación de los costos de cada alternativa .. 72
 5.2.1 Costos de inversión .. 72
 5.2.2 Costos de mantención .. 73
 5.2.3 Costos por congestión durante la construcción .. 74
5.3 Criterios para la selección de alternativas .. 74
 5.3.1 Evaluación .. 74
 5.3.2 Selección de alternativas .. 77
5.4 Análisis de sensibilidad .. 77

6 Presentación de la alternativa seleccionada .. 79

Bibliografía .. 85

Glosario .. 87
<table>
<thead>
<tr>
<th>Anexo N°</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Medición de flujos vehiculares</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>Metodología de estimación del valor social del tiempo</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>Valores de rugosidades de caminos para diferentes niveles de servicialidad</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Aspectos considerados en anteproyectos de ingeniería</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>Ejemplo de aplicación de la metodología de vialidad urbana. Proyecto: Construcción vía circunvalación Tocopilla</td>
<td>103</td>
</tr>
</tbody>
</table>
INDICE DE FIGURAS

Figura 1: Rentabilidad y acumulación de capital .. 4
Figura 2: Ciclo de vida de los proyectos ... 5
Figura 3: El costo de la certidumbre .. 7

INDICE DE TABLAS

Tabla I: Ciclo de vida de los proyectos ... 10
Tabla II: Factores de equivalencia de vehículos por categoría 25
Tabla III: Tasas de ocupación promedio según categorías 32
Tabla IV: Flujo de saturación base (ADE/hr-pista) ... 39
Tabla V: Efecto del estacionamiento de vehículos en el ancho efectivo de las calles 50
Tabla VI: Consumo de combustible por detenciones .. 65
Tabla VII: Consumo de combustible en ralenti (lts/hrs) 66
Tabla VIII: Consumo de combustible en movimiento ... 68
Tabla IX: Precio social de combustible ... 68

INDICE DE EJEMPLOS

Ejemplo 1: Arbol de efectos .. 17
Ejemplo 2: Arbol de causas .. 18
Ejemplo 3: Arbol del problema ... 19
Ejemplo 4: Conversión de vehículos a vehículos equivalentes (veq) 26
Ejemplo 5: Corrección del flujo de saturación por gradiente 40
Ejemplo 6: Corrección del flujo de saturación por vehículos estacionados 41
Ejemplo 7: Corrección del flujo de saturación por paradero de locomoción colectiva 42
Ejemplo 8: Corrección del flujo de saturación por viraje 43
Ejemplo 9: Corrección del flujo de saturación por intersección semaforizada 43
Ejemplo 10: Grado de congestión y capacidad de reserva de una vía 45
Ejemplo 11: Arbol de objetivos ... 54
Ejemplo 12: Formulación de acciones ... 55
Ejemplo 13: Formulación de alternativas ... 56
Ejemplo 14: Consumo de combustible por detenciones 66
Ejemplo 15: Consumo de combustible en movimiento 67
Ejemplo 16: Otros consumos de operación .. 71
Ejemplo 17: Momento óptimo de inversión .. 77
RESUMEN

Este documento presenta una metodología para la identificación, preparación y evaluación, a nivel de perfil, de proyectos de vialidad urbana. En primer término se entregan algunos conceptos básicos que dan un marco general a la guía y ayudan a una mejor comprensión de aspectos tratados más adelante. Se discute la importancia de preparar y evaluar los proyectos. Enseguida, se describe el ciclo de vida de los proyectos y se analizan sus particularidades para proyectos de vialidad urbana.

La guía destaca la importancia de identificar bien el problema, buscando la causa principal que lo genera. Se presentan instrumentos y técnicas que ayudan en la tarea de identificación y se especifica como describir el problema, dimensionarlo y estudiar su evolución esperada.

Enseguida se entregan pautas para realizar un adecuado diagnóstico de problemas viales urbanos. Se describen métodos para la determinación del grado de conflicto en la vialidad, mediante indicadores de oferta y demanda. Luego se presentan algunos elementos necesarios para la definición e identificación de alternativas, que resulten adecuadas y consistentes con el diagnóstico del problema. Se indica la necesidad de realizar una optimización de la situación actual y qué aspectos estudiar para ello. Además, se detalla cómo efectuar la identificación y análisis preliminar de alternativas.

Se describe luego la metodología a seguir para la evaluación de las alternativas de proyecto. Se presentan criterios para la identificación y cuantificación de los beneficios y costos involucrados en cada alternativa, así como para la selección de la mejor alternativa. Por último, se detallan los elementos mínimos a incluir en el documento de perfil de un proyecto de vialidad urbana.

Se incluyen también anexos que profundizan en aspectos técnicos tales como la estimación del valor social del tiempo y el contenido de los anteproyectos de ingeniería. Otros entregan información complementaria necesaria para la aplicación de la metodología. Ademá se presenta un caso que ilustra cómo aplicar en la práctica los conceptos y métodos descritos.
PROLOGO

La competitividad de los países está íntimamente relacionada con una serie de factores como fortaleza de la economía doméstica, nivel de internacionalización, solidez de las finanzas, desarrollo de la gestión empresarial, condiciones de infraestructura, estado la ciencia y la tecnología y calidad del recurso humano. Dentro del aspecto infraestructura, el tema vial juega un papel trascendental para facilitar el desarrollo de las potencialidades internas, permitir una eficiente interconexión con los mercados regionales internos y elevar los niveles de productividad doméstica. El reconocimiento de la importancia de estos elementos ha motivado a muchos países a fundamentar sus planes y estrategias de desarrollo en la infraestructura básica. Desde otro punto de vista, una adecuada red de comunicación vial no sólo facilita la cohesión social sino que también evita el aislamiento y la dicotomía entre el campo y la ciudad.

A partir de las anteriores argumentaciones, una de las formas más eficaces para promover el desarrollo del sector consiste en la elaboración de guías o manuales prácticos sobre la identificación, preparación, evaluación, seguimiento y control de proyectos viales. En esta ocasión se ha privilegiado como prototipo a los pequeños proyectos de vialidad urbana. En el nivel local las autoridades tienen una mayor autonomía y delegación de funciones para emprender este tipo de obras y por lo tanto, su necesidad es mayor. Por el contrario, los macro proyectos de vialidad exigen estudios de factibilidad que cuentan con el respaldo de los organismos internacionales de financiamiento.

Por último, el ILPES al emprender este tipo de trabajos complementa la elaboración de Guías similares en los sectores sociales y productivos.

Edgar Ortegón
Dirección de Proyecto y
Programación de Inversiones
ILPES
INTRODUCCION

En todos los tiempos el hombre ha tenido que dar respuesta a sus necesidades y por consiguiente, ha debido disponer de bienes y servicios que le permitan satisfacerlas. Para producir los bienes y servicios que desea consumir requiere de recursos productivos, los que son limitados en relación a las necesidades humanas. Esto significa que los recursos son escasos y por lo tanto, se debe buscar y elegir la mejor forma de usarlos y obtener el mayor bienestar posible con ellos.

La satisfacción de necesidades contribuye a mejorar la calidad de vida de los miembros de la sociedad y ello genera, a su vez, la demanda creciente por el uso de recursos productivos que permitan satisfacer estas necesidades. El aumento de la capacidad productiva se logra a través de la inversión. Por otra parte, la calidad de la inversión realizada está directamente relacionada con la correcta asignación de los recursos disponibles; y la correcta asignación de recursos va a depender, entre otras cosas, de la disponibilidad de proyectos rentables.

Sin embargo, el crecimiento económico y el desarrollo de un país requieren como apoyo, de infraestructura de transporte que permita a los diferentes actores del sistema productivo (mano de obra, insumos, etc) trasladarse en forma expedita de un lugar a otro. Así, la inversión en puertos, aeropuertos, caminos y vialidad urbana resulta un factor imprescindible para un desarrollo sustentable.

Por lo tanto, identificar e implementar proyectos que permitan una mejor oferta en términos de capacidad de infraestructura, se convierte día a día en una necesidad y un importante desafío para las autoridades encargadas de la toma de decisiones de un país. El contar con proyectos que efectivamente generen los impactos esperados depende, en gran medida, tanto de una buena identificación y preparación de ellos, como de su evaluación.

En el marco del fortalecimiento de esta labor, este documento tiene como objetivo guiar el proceso de identificación y preparación de proyectos en el sector transporte, específicamente en vialidad urbana, entregando los elementos mínimos a considerar en cada una de sus etapas. Los objetivos específicos de la guía son:
Guía para la Identificación y Formulación de Proyectos de Vialidad Urbana

a. Ofrecer orientaciones y herramientas prácticas para la identificación y preparación de proyectos de vialidad urbana.

b. Mostrar las etapas mínimas que deberían cumplir los proyectos de vialidad urbana y el contenido de cada una de ellas.

En el diseño de la guía se pensó en especial en los formuladores de proyectos de vialidad urbana a nivel local por lo que se dejó fuera del análisis los proyectos de tipo estructural, entendiéndose por tal aquellos proyectos que inducen cambios significativos en la demanda. En otras palabras esta guía se centrará en proyectos no-estructurales, es decir proyectos en que no hay cambios significativos en la demanda, pudiendo subdividirse en proyectos de infraestructura (cuando la implementación del proyecto requiere de una inversión) o de gestión (cuando no hay inversión asociada y solo un mejoramiento en señalizaciones, estacionamientos, etc. provoca una mejora de la situación actual).
1 Aspectos generales

El objetivo de este capítulo es presentar algunos conceptos básicos que dan un marco general a la guía y ayudan a una mejor comprensión de aspectos tratados más adelante. Se discute la importancia de preparar y evaluar los proyectos. Enseguida, se describe el ciclo de vida de los proyectos y se analizan sus particularidades para proyectos de vialidad urbana.

1.1 La importancia de una buena identificación, preparación y evaluación

Tal como se mencionó anteriormente, el proceso de desarrollo de un país está íntimamente ligado a la inversión que en él se realice y su calidad. Esta se interpreta como la efectividad y eficiencia con que se consiguen los objetivos fijados para el programa de inversiones. La inversión será efectiva cuando ella permita alcanzar los objetivos deseados. Será además eficiente cuando consiga los objetivos al menor costo posible.

La calidad de la inversión pasa, necesariamente, por una buena asignación de los recursos. Para ello, es indispensable identificar los mejores proyectos, que son en definitiva los que más contribuyen al desarrollo. Es precisamente en este punto donde la evaluación de proyectos juega un rol muy importante, por cuanto permite medir la contribución de los proyectos al proceso de desarrollo.

La importancia de elegir los proyectos mas rentables se ilustra en la figura 1. En este caso hipotético se supone que se invierte en proyectos que al año retornan el capital invertido más una cierta utilidad (rentabilidad porcentual), recursos que se reinvierten todos al año siguiente en proyectos de iguales características. Se aprecia que al cabo de diez años y con una tasa de rentabilidad de un 5%, el capital habrá aumentado en un 63%. En cambio, si se logra invertir en proyectos con una rentabilidad del 10% anual, el capital aumentará en diez años en un 159%, con lo cual el inversionista será un 59% más rico que en el caso anterior.

La evaluación social de proyectos tiene como objetivo identificar y valorar la contribución de un determinado proyecto al desarrollo de un país. Le interesa identificar los efectos en toda la sociedad. Si para un determinado proyecto, los beneficios que recibe la sociedad son mayores que los costos en que
incurre para realizarlo, entonces el proyecto será rentable.

Para un apropiado análisis de la situación, es necesario conocer bien el problema y todas las alternativas de solución. Ello permitirá responder preguntas tales como: ¿la solución será vía aumento de la infraestructura o mejoramiento en la gestión?, ¿dónde estará ubicado el proyecto?, ¿quienes serán los beneficiarios?, ¿duración del proyecto?, etc.

Para responder adecuadamente estas preguntas, es fundamental una buena preparación de los proyectos. El proceso de identificación y preparación reúne información básica y determinante para decidir con mayor seguridad que acciones tomar. En este sentido, es muy importante indagar, investigar y analizar hasta el punto donde se tenga la total convicción de que se ha identificado la mejor alternativa de proyecto, que tendrá como resultado optar por la forma más eficiente de alcanzar el objetivo deseado.

1.2 Ciclo de los proyectos

El objetivo de este punto es mostrar el recorrido que siguen todos los proyectos de inversión, desde la generación de la idea hasta su puesta en funcionamiento. En este recorrido, los proyectos son sometidos a distintas evaluaciones cuya complejidad depende del estado en que se encuentren.

Un **proyecto de inversión** es la decisión sobre el uso de recursos con el objetivo de incrementar, mejorar o mantener la producción de bienes o prestación de servicios y/o incrementar, mejorar, mantener o

1 Cuando los beneficios y costos de un proyecto ocurran en distintos años, estos deben ser actualizados a una misma fecha a fin de poder compararlos. Esto se estudiará en el Capítulo 5.
recuperar la capacidad de generación de beneficios de un recurso humano o físico. Esta decisión se puede materializar en una obra física y/o en una acción específica.

En el caso del sector transporte, y específicamente en vialidad urbana, es posible distinguir dos tipos de proyectos: de infraestructura y de gestión. Los primeros están relacionados con la construcción de nuevas vías, ensanche de calles, repavimentaciones, etc. Los proyectos de gestión, en cambio, están destinados a mejorar la operación del tránsito con medidas de tipo administrativas o bien inversiones menores; materializándose en acciones tales como señalizaciones, demarcaciones del pavimento, canalizaciones de los flujos según el tipo de movimiento, prohibición de estacionamientos en ciertas áreas, etc.

Para efectos de esta guía, se hablará de proyecto en términos generales, refiriéndose tanto a la inversión en infraestructura como a la inversión en gestión. Cuando sea necesario un tratamiento diferente para cada tipo de proyecto se indicará explícitamente.

Todo proyecto sigue una trayectoria que se materializa, como se mencionó anteriormente, en una obra física o en la implementación de una acción determinada. La transformación de simples ideas de inversión hasta la puesta en marcha o implementación de ellas es lo que se denomina el ciclo de los proyectos. Cada una de las etapas de esta transformación requiere de recursos humanos, materiales, financieros, de información, etc. que van agregando valor a las ideas. Si bien es cierto que este proceso adquiere en la práctica matices diferentes para cada caso, es posible visualizar características que permiten una cierta generalización del mencionado proceso de transformación.
En la trayectoria de los proyectos se pueden distinguir tres estados sucesivos: preinversión, inversión y operación. El estado de preinversión corresponde a todo el proceso que se realiza para identificar un problema o necesidad, formular el proyecto y evaluar la iniciativa con el objetivo de determinar si es conveniente ejecutarla o no. Si la decisión es de ejecutarla, se pasa al estado de inversión. En el estado de inversión se realiza el diseño o proyecto de ingeniería de detalle, el cronograma detallado de actividades, y la ejecución de la obra o implementación de las actividades. Finalmente, en el estado de operación se pone en marcha la obra terminada o el plan específico a seguir, de acuerdo a lo proyectado. En este estado se comenzarán a generar los beneficios estimados en la preinversión.

1.2.1 Estado de preinversión
La selección de la alternativa que se transformará en el proyecto y la decisión sobre la conveniencia de ejecutarlo requiere seguir una serie de etapas, en cada una de las cuales se realizan estudios cuya complejidad va aumentando.

En el estado de preinversión se distinguen cuatro etapas:
- Generación y análisis de la idea de proyecto
- Estudio a nivel de perfil
- Estudio de prefactibilidad
- Estudio de factibilidad

Dependiendo de la complejidad y costo del proyecto, será necesario que éste pase por algunas o todas estas etapas. Así, para un proyecto sencillo que involucra un bajo costo, puede decidirse su ejecución, tan sólo con un estudio a nivel de perfil.

En cada una de las etapas se puede tomar decisiones tales como: pasar a una etapa más avanzada, paralización temporal del estudio en la etapa alcanzada o dar por terminados los estudios ya que en ese punto se logró el nivel de detalle suficiente para tomar la decisión de ejecutar el proyecto o abandonarlo definitivamente. A través de las etapas se va precisando el problema o necesidad a solucionar, los bienes o servicios que serán otorgados, las alternativas técnicas más convenientes y sus respectivos costos y beneficios. Por lo tanto, constituyen un proceso gradual de "compra" de certidumbre, donde la complejidad
de los proyectos va a exigir pagar más por un mayor nivel de detalle y profundidad de los estudios (ver figura 2).

La ventaja de ir abordando el estudio por etapas es la de permitir que, al estudio mismo, se destine un mínimo de recursos. Es decir, si en una etapa se llega a la conclusión de que el proyecto no es viable técnica ni económicamente, carece de sentido pasar a las etapas siguientes. Con esto, se evitan gastos innecesarios.

a. Generación y análisis de la idea

En esta etapa, producto de un diagnóstico preliminar, de políticas generales para el sector, o en algunos casos presión de la comunidad, se identifica una necesidad insatisfecha o problema a resolver, el conjunto de posibles beneficiarios, la localización geográfica y los objetivos que se espera alcanzar con el proyecto. Por último, se generan algunas posibles alternativas de solución, de acuerdo con los objetivos predeterminados.

Figura 3: El costo de la certidumbre

![Diagrama de Estado de Preinversión](image18x5.png)

b. Estudio a nivel de perfil

En esta etapa se incorpora información adicional y se precisa la proveniente de la etapa anterior. La elaboración del perfil debe incluir la definición de la "situación sin proyecto", un análisis preliminar de los aspectos técnicos, de la oferta y demanda de la vía en estudio, de beneficios y costos de las posibles alternativas de solución propuestas, además de la evaluación a ese nivel. Para su realización se deben utilizar los datos y la información con que se cuenta, sin incurrir en mayores costos adicionales para su obtención. El perfil permite analizar la viabilidad técnica-económica de las distintas alternativas propuestas, descartando aquellas que no son factibles de ejecutar.
La etapa a nivel de perfil permite adoptar alguna de las siguientes decisiones:
- Profundizar el estudio en los aspectos del proyecto que lo requieran,
- Proponer la ejecución del proyecto, siempre que se haya logrado un nivel aceptable de certidumbre respecto a la conveniencia de materializarlo,
- Abandonar definitivamente la idea, si los resultados del estudio de perfil son desfavorables a ella, postergar la ejecución del proyecto.

Cabe destacar que en la etapa de perfil se logra una gran disminución de la incertidumbre a un costo bastante bajo. Por ello, la preparación de buenos perfiles de proyectos es de suma importancia ya que puede evitir incurrir en costosos estudios para proyectos no viables.

c. Estudio de prefactibilidad

En esta etapa se precisa con mayor detalle la información proveniente del perfil. Para ello, se debe estimar con un nivel de precisión mucho mayor la demanda y su proyección, la oferta y los costos de inversión y operación, tanto de la situación actual como de las opciones de proyecto.

Para la estimación de la demanda, lo normal es que en esta etapa se requiera hacer estudios especiales como conteos de flujos y encuestas Origen - Destino.

Luego, se evalúa técnico - económicamente el conjunto de alternativas preseleccionadas en la etapa anterior, con el propósito de establecer cual es la mejor alternativa de proyecto y descartar las restantes.

d. Estudio de factibilidad

Este estudio debe enfocarse al examen detallado de la alternativa que se ha considerado más viable en la etapa anterior. Esto significa poner el esfuerzo en medir y valorar en la forma más precisa posible sus beneficios y costos. Se debe profundizar en el análisis y el estudio de variables que inciden en el proyecto, disminuyendo la variación esperada de los costos y beneficios de las opciones de proyecto en estudio.
Una vez que el proyecto ha sido definido y caracterizado, deben optimizarse todos los aspectos relacionados con la obra física, el programa de desembolsos de inversión, programa de ejecución, puesta en marcha y operación, con el objeto de hacer más eficiente todo el proceso.

Con la etapa de Factibilidad finaliza el proceso de aproximaciones sucesivas de la formulación y preparación de proyectos, proceso en el cual tiene importancia significativa la secuencia de afinamiento y de análisis de la información.

1.2.2 Estado de inversión

Este estado es el punto de partida de las acciones tendientes a la ejecución física de los proyectos, de acuerdo a las estimaciones realizadas en el estado de preinversión. En el estado de inversión se pueden distinguir las etapas de:

- **Diseño** del proyecto o programación de las actividades
 - **Ejecución** del proyecto o acción

 a. Diseño

 En esta etapa se elaboran los programas arquitectónicos detallados y/o estudios de ingeniería del proyecto, en el caso que sea un proyecto de infraestructura. Para un proyecto de gestión, la etapa de diseño corresponde a la elaboración del programa de actividades a ejecutar, ajustado a los requerimientos resultantes del estudio.

 b. Ejecución

 Corresponde a la etapa donde se realiza el desarrollo de la obra física o la implementación de las actividades programadas.

1.2.3 Estado de operación

Este estado corresponde a la puesta en marcha de los proyectos. En él se comienzan a concretar los beneficios estimados en la preinversión. En algunos casos se distingue dentro del estado de operación una etapa de puesta en marcha de una etapa de operación plena del proyecto.
1.3 La evaluación de los proyectos

Asociadas a los estados por los que pasan los proyectos están las distintas evaluaciones a las que son sometidos (ver tabla 1). Durante el estado de preinversión se efectúan evaluaciones ex-ante del proyecto (a nivel de perfil, prefactibilidad o factibilidad). En el estado de ejecución se efectúa un seguimiento físico-financiero del proyecto, evaluando si el avance observado está de acuerdo a lo planificado. Por último, en el estado de operación puede efectuarse un seguimiento del proyecto, a objeto de efectuar una evaluación ex-post de él.

Por evaluación ex-ante se entenderá la comparación, numérica o no, de los costos y beneficios que se estima generará el proyecto si es implementado. Si dicha comparación se realiza desde el punto de vista de la empresa o entidad que realiza el proyecto será una evaluación financiera. En cambio, si la evaluación se realiza desde la perspectiva de la sociedad en su conjunto, se tratará de una evaluación económica. Por último, la evaluación técnica del proyecto analiza si la alternativa escogida es técnicamente viable.

Por seguimiento físico financiero se entenderá el seguimiento que se realiza a un proyecto durante la etapa de ejecución en términos del avance de las obras o acciones (volúmenes de obra, servicios brindados), cronograma y recursos empleados. El objetivo de este seguimiento es detectar desviaciones

2 También se conoce a la evaluación económica como evaluación social. Ambos términos se utilizarán como sinónimos en el presente documento. Sin embargo, cabe señalar que algunos autores utilizan el término evaluación económica en el sentido descrito, pero reservan el término evaluación social para designar una evaluación económica a la cual se le han introducido ponderaciones por concepto de distribución de ingreso.
respecto a la programación inicial del proyecto que sean resultado de problemas en la ejecución o de una mala planificación. Ello, a fin de adoptar a tiempo medidas que minimicen los efectos (sobrecostos, atrasos) de los problemas que se presenten.

Por evaluación ex-post se entenderá al proceso encaminado a determinar sistemáticamente y objetivamente la pertinencia, eficiencia, eficacia e impacto de todas las actividades desarrolladas a la luz de los objetivos planteados. Es un proceso organizativo para mejorar las actividades que se encuentran aún en marcha y ayudar a la unidad de administración del proyecto en la planificación, programación y decisiones futuras.

Es así que, con el propósito de cerrar el ciclo de un proyecto y de retroalimentar todo el proceso, es recomendable realizar, en las etapas de inversión y operación, un seguimiento periódico de aquellas variables que puedan determinar en una evaluación posterior si efectivamente el proyecto o programa está alcanzando (o alcanzó) los objetivos estimados en la evaluación ex-ante.

Ya se señaló que en la etapa de diseño y ejecución se realiza básicamente un seguimiento del gasto y el tiempo necesarios para terminar con el proyecto. Esta información, así como la descripción de los problemas detectados, la solución que se les dio y los resultados que se obtuvieron, debe ser resumida en un informe de término de proyecto (ITP). Este deberá contener toda la información necesaria para evaluar la eficiencia y efectividad con que se desarrolló la ejecución del proyecto. Además, deberá sugerir las variables que será conveniente seguir en el estado de operación a objeto de poder realizar más tarde la evaluación ex-post del proyecto.
2 Identificación del proyecto

El objetivo de este capítulo es destacar la importancia de identificar bien el problema, buscando la causa principal que lo genera. Se presentan instrumentos y técnicas que ayudan en la tarea de identificación. Por último, se especifica como describir el problema, dimensionarlo y estudiar su evolución esperada.

2.1 Tipo de problema

Para los efectos de aplicación de esta guía, se distinguirán dos situaciones que condicionan el modo de enfrentar y analizar el problema. Estas son:

- Cuando existe una calle o intersección que presenta un déficit en la calidad del servicio que provee, lo que puede ser producto de falta de capacidad, carpeta de rodado en malas condiciones, falta de seguridad, etc.

- Cuando se requiere realizar un tipo de viaje que no está siendo cubierto por la red actual o no es posible realizarlo por un modo de transporte específico (ejemplo: transporte público). Es decir, interesa conectar dos o más áreas pero no existe una ruta directa para ello, o bien, existe pero no es posible realizar el viaje por un cierto modo de transporte.

2.2 Identificación y definición del problema

Todo proyecto de inversión en vialidad urbana que se ejecute debería contribuir al logro de los objetivos planteados para el sector por la autoridad correspondiente. Al mismo tiempo, cada proyecto debería tener como objetivo inmediato solucionar problemas puntuales, claramente identificados, que en algún grado dificulten la labor del sector en el logro de sus objetivos generales.

Normalmente, un primer análisis permite identificar con mayor claridad los efectos antes que las causas del problema. Se entiende por efecto la manifestación observable de algún problema. Por causas se denomina al conjunto de factores interrelacionados que producen o generan el problema.

El proyecto debe formularse siempre en términos tales que permita solucionar las causas del problema detectado. Por esta razón, una buena identificación del problema de fondo, identificando sus causas, es
fundamental para originar la idea de proyecto precisa. Si no se identifican bien las causas del problema, lo más probable es que el proyecto que se formule no alcance el objetivo deseado.

Por lo tanto, la importancia de definir claramente el problema radica en que esta definición servirá de base para plantear un proyecto que lo resuelva. Así, la definición de las acciones a seguir, la decisión de llevarlo a cabo y la implementación van a depender de que tan precisa y claramente se especificó el problema.

2.2.1 **Instrumentos y técnicas para identificar proyectos en el sector vialidad urbana**

A continuación se describen dos mecanismos que dan una pauta para detectar problemas en el sector vialidad urbana.

a) **Objetivos y políticas del sector**

Un punto de partida importante para la identificación de un problema es situarse en el marco general dado por los objetivos, políticas y lineamientos del sector vialidad urbana. En este sentido, es muy importante conocer las prioridades del sector a nivel nacional y las estrategias desarrolladas por las distintas regiones para implementar las políticas. Así, comparando la situación esperada del sector en una comuna o región con el modelo dado por los objetivos y políticas, será posible detectar problemas que estén impidiendo lograr las metas deseadas. Por ejemplo, si una de las políticas nacionales para el sector es la de fomentar el uso del transporte público, deberá pensarse en proyectos que mejoren la calidad del servicio de los buses. Podrán analizarse desde proyectos de gestión, como la licitación de recorridos, hasta proyectos de infraestructura, como la construcción de vías exclusivas para buses, entre otros.

b) **Existencia de congestión**

Una de las formas más simples de detectar un problema a nivel local es a través de la observación de los flujos vehiculares. Cuando se observa dificultad en el desplazamiento de vehículos, colas en las intersecciones, etc., se puede concluir que existe un problema real de falta de capacidad en las vías en cuestión. Normalmente un simple conteo de la cantidad de vehículos por unidad de tiempo nos permitirá determinar que tan cerca de la capacidad de la vía está la demanda.
2.2.2 Descripción del problema

Una vez que se ha logrado identificar un problema que afecta a una vía específica, es necesario describir la situación con el mayor detalle posible (lo que permita el nivel de análisis logrado). Ello, con el objeto de identificar claramente las causas y los efectos. La descripción debería abordar al menos los siguientes aspectos:

- Todas las posibles causas que están determinando la situación que se desea solucionar.

- La localización geográfica del problema detectado.

- La consideración de cómo fue detectado el problema. Para ello será necesario verificar si la información es confiable, indagar su procedencia, su vigencia, periodicidad, etc.

- Por último, la determinación de la antigüedad del problema o necesidad. Si no se trata de una situación reciente, habrá que estimar el tiempo que lleva manifestándose y señalar si se ha abordado con anterioridad. Si existe alguna acción que se haya realizado para enfrentar la situación, será importante conocer cuando se ejecutó, si existe información de los resultados obtenidos y cuáles fueron estos resultados. Lo más probable es que de haberse realizado alguna actividad dentro de los últimos cinco años, ésta haya sido una solución parcial o para atacar el problema inmediato, o, en el peor de los casos, una mala solución. Lo importante es rescatar la experiencia de quienes detectaron, diseñaron y ejecutaron la solución y los diagnósticos o análisis realizados en esa oportunidad.

2.3 El árbol del problema

Cuando nos enfrentamos a la decisión de realizar un proyecto, previo a ello ha existido el cuestionamiento de una situación que pareciera posible de ser mejorada. Dicha situación es el resultado de la existencia de un problema.

La adecuada identificación de ese problema como así mismo de sus alcances, es fundamental para la proposición de alternativas de solución al mismo. Ello, porque es necesario conocer las causas que
originan la situación que queremos mejorar, para luego analizar cuál es la forma más eficiente de eliminar o disminuir dichas causas.

A modo de ejemplo, si vamos al tema específico de la vialidad urbana, el observar atochamiento en un punto específico de la ciudad, podría llevarnos a plantear soluciones como el ensanchamiento de calles, apertura de nuevas vías, etc. Sin embargo, pudiera ser que al analizar el problema en detalle, nos diéramos cuenta que el atochamiento lo causa, por ejemplo, la disminución de la capacidad de las vías en cuestión por estacionamiento de automóviles en ambos costados de la misma, o por la detención indebida de buses a lo largo de un tramo significativo de la vía. En casos como éstos, es claro que medidas de gestión menores podrían solucionar el problema en gran medida. Ciertamente dichas acciones resultan bastante más económicas que los proyectos de gran envergadura mencionados anteriormente.

El árbol del problema\(^3\), o árbol de causas - efectos, es un excelente y sencillo instrumento para identificar las repercusiones encadenadas del problema y las causas que lo desencadenaron. Consiste en representar gráficamente hacia arriba los efectos identificados como consecuencia del problema (árbol de efectos) y hacia abajo las causas que se visualiza dieron origen al problema (árbol de causas).

Para la construcción del árbol de efectos podemos seguir estas instrucciones:

a) Dibuje un recuadro que describa el problema identificado

b) Coloque en un primer nivel los efectos directos o inmediatos del problema. Cada efecto nace del problema, lo que se representa con una flecha desde el problema hacia cada efecto inmediato.

c) Pregúntese para cada efecto de "primer nivel" si hay alguno o varios efectos superiores importantes que puedan derivarse de él. Represéntelos en un segundo nivel, derivándolos con flechas de abajo hacia arriba desde el efecto de primer nivel que opera como causa. Si a un efecto concurre como causa otro efecto de primer nivel ya representado, indique la interdependencia con

\(^3\) Este punto corresponde a una adaptación de una sección del Libro de SANIN, 1995
una flecha.

d) Continúe así, sucesivamente para otros niveles, hasta llegar a un nivel que se considere como el superior dentro de la órbita institucional en que tenemos competencia o posibilidades de intervención.

Ejemplo 1: Arbol de efectos

Si como resultado de este ejercicio se determina que el problema es trascendente para el contexto municipal, vale la pena dedicar esfuerzos y recursos para buscar una solución.

Para la construcción del árbol de causas se representan desde abajo las causas posibles del problema central. A su vez, se buscan las causas de las causas, construyendo un árbol encadenado.

En principio conviene dar rienda suelta a la creatividad. Una buena definición del problema con sus causas examinadas sin restricciones iniciales aumentará la probabilidad de soluciones exitosas.
El empalme del "Arbol de Efectos" con el "Arbol de Causas" genera el "Arbol del Problema" (ver Ejemplo 3).
Ejemplo 3: Arbol del problema

- Incremento de la polución ambiental
- Altos costos por tiempo perdido
- Inseguridad ciudadana
- Alta tasa de accidentes
- Altos costos de operación vehicular
- Pobre identificación con la ciudad
- Menor inversión en sector norte

Infraestructura vial deficiente entre sector norte y centro de Antofagasta

- Insuficientes vías de conexión norte-centro
- Excesivo aumento de los viajes norte-centro
- Deficiente uso de las vías existentes
 - Conflictiva servidumbre ferrocarril
 - Falta de vías alternativas
 - Insuficientes servicios en sector norte
 - Deficiente señalización
 - Inadecuada asignación de sentidos de tráfico

- Expansión urbana no planificada en sector norte
3 Diagnóstico de la situación actual

El objetivo de este capítulo es entregar algunos conceptos básicos que permitan realizar un adecuado diagnóstico de problemas viales urbanos. Se describen métodos para la determinación del grado de conflicto en la vialidad, mediante indicadores de oferta y demanda.

3.1 Necesidad del diagnóstico

Entenderemos por diagnóstico de la situación actual, la descripción de lo que sucede al momento de iniciar el estudio, en el área en cuestión. Dicha descripción supone, en primer término, una presentación clara y detallada del problema que origina la inquietud de elaborar un proyecto.

Es necesario luego, indicar la magnitud de dicho problema mediante datos concretos: número de vehículos afectados, demoras de los mismos y tasa de accidentes, que entre otros, son los parámetros más frecuentes en vialidad urbana.

Mediante los dos elementos anteriores (identificación y cuantificación del problema), es posible hacer un diagnóstico de la situación actual, visualizando un conjunto de posibles soluciones. Estas soluciones serán acertadas en la medida que el diagnóstico sea completo, preciso y minucioso, por lo que el tiempo invertido en este aspecto sentará bases más sólidas para el análisis posterior.

En general, una intersección está congestionada si normalmente es posible apreciar más de cuatro vehículos por pista esperando la oportunidad de avanzar en una intersección de prioridad, o bien, en una intersección semaforizada, si un vehículo debe esperar más de dos cambios de luces en el semáforo. Naturalmente, estos valores son sólo referenciales y requieren un análisis de cada caso en particular. Sin embargo, la presencia de éstas condiciones en forma permanente o frecuente a lo largo de un día, señala la presencia de un problema de congestión.

La elaboración del diagnóstico comprende las siguientes etapas:

- Definición del área de estudio
- Determinación de la demanda actual
- Determinación de los tiempos de viaje actuales
3.2 Definición del área de estudio y del área del influencia

Un factor básico para el diagnóstico es conocer el área que se ve afectada por el problema y que condiciona el alcance de las alternativas de solución propuestas, esta área se denomina área de estudio. En el caso de vialidad urbana, una situación de congestión puede ser provocada por una intersección mal configurada (nudo vial), un tramo de vía que puede incluir muchas intersecciones problemáticas (eje) o un conjunto de vías que no están operando apropiadamente (red de transporte). De acuerdo a la apreciación del problema, las alternativas de solución estarán orientadas a mejorar la operación del nudo, al estudio de alternativas para el eje o al análisis de la red vial.

La determinación del alcance del proyecto, esto es, del área de influencia, resulta fundamental para definir límites en la evaluación del impacto que tendrá el proyecto, así como para especificar qué variables resultan relevantes en el análisis y requieren ser medidas. Por ejemplo, si un proyecto de vialidad urbana modifica la estructura de viajes de la ciudad e impacta sobre las actividades que se realizan en ella, el área de influencia es toda la ciudad y se requiere información sobre los niveles de tránsito en todas las vías principales de la ciudad, análisis del sistema de actividades y su relación con los viajes, matrices origen-destino, etc. En cambio, si se considera mejorar mediante un proyecto de gestión una sola intersección, entonces el área de influencia es mucho más limitada ya que considera la intersección más algunas intersecciones adyacentes y requiere de información limitada de tránsito.

El criterio fundamental es que el área de influencia es aquella en la cual el proyecto producirá impactos significativos. Su delimitación varía dependiendo si el proyecto inducirá o no reasignación de flujos.
En el caso de proyectos de vialidad urbana sin reasignación de flujos, el área debería comprender la zona definida como sujeta al proyecto en estudio (nudo, tramo o conjunto de ambos) más la intersección semaforizada adyacente a cada nudo, aguas arriba y aguas abajo, siempre que no diste más de 500 metros.

Para aquellos proyectos en que se espera reasignación de flujos, se debe obtener matrices origen - destino para los vehículos que no siguen un recorrido fijo, y flujos por recorrido para éstos. El área de influencia estará delimitada por los cambios previsibles que se estima en la asignación de flujos y en los recorridos de transporte público.

3.3 Determinación de la demanda actual

La demanda actual del tramo de vía o nudo en estudio está representada por el volumen vehicular promedio que circula por allí por unidad de tiempo y, a la vez, por las tasas de ocupación promedio de los vehículos.

El volumen vehicular se denomina flujo, el cual corresponde a una medida de los viajes que se realizan en un período y lugar determinados. Los flujos vehiculares varían en el tiempo, por lo que en los estudios se utilizan diferentes valores medios, según el período del día. Es decir, se determina un flujo medio para el período punta (peak, pico) de la mañana, otro para el período punta de la tarde y otro para el período fuera de punta.

Dependiendo del nivel del estudio de preinversión y magnitud del proyecto, la determinación de la demanda actual y en situación con proyecto requerirá realizar: conteos de flujos, cuantificación de las tasas de ocupación y encuestas origen - destino.

3.3.1 Conatos de flujos
a) Flujos vehiculares
i) La semana tipo

Previo a realizar mediciones de flujos, se debe definir la semana tipo, que será representativa para hacerla extensiva a un año, en lo que se refiere a flujos y movimientos vehiculares promedios.
Para medir los flujos se considera suficiente hacerlo durante una semana, pues en ella se incluyen las variaciones tendenciales de orden horario y diario, que son las principales. En caso que un proyecto esté planeado para ejecutarse en un área sujeta a fluctuaciones estacionales (un balneario, por ejemplo), puede dividirse el año en temporadas, cada una de las cuales queda representada por una semana tipo.

En la semana tipo que será representativa del año base, se recomienda medir los flujos en los siguientes días y horarios:

- Dos días laborales de 7.00 a 23.00 hrs. (elegidos entre Martes, Miércoles y Jueves)
- Sábado, de 9.00 a 23.00 hrs.
- Domingo, de 10.00 a 22.00 hrs.

Dependiendo de las características particulares de cada proyecto, pueden desplazarse las horas inicial y final indicadas, pero no la cantidad de horas contempladas en cada día de la semana.

La información del día laboral se obtiene promediando los valores obtenidos para los dos días en que se midieron los flujos.

ii) Identificación y cuantificación de los flujos

Al cuantificar los flujos, ellos se deben separar según el tipo de movimiento que se produce, de acuerdo al ámbito del proyecto, es decir, si el proyecto se refiere a una intersección (nudo) o a un eje o una red. Si se trata de una intersección se deben cuantificar todos los movimientos existentes dentro del área de influencia. En las intersecciones de frontera (situadas en el límite del área) se deben medir sólo los flujos en los accesos que aportan tráfico hacia el nudo en estudio, o lo reciben de él. En caso que el proyecto se refiera a un eje, se cuantifican todos los movimientos en las intersecciones semaforizadas o rotondas dentro del área de influencia. Para las intersecciones de frontera vale lo indicado anteriormente.

La cuantificación de los flujos se debe hacer en los días y horas indicados, subdividiéndolos en períodos de 15 minutos y desglosándolos por categoría de vehículo, que en general son:

- Automóviles particulares
- Taxis ocupados
- Taxis vacíos
- Buses y Microbuses
- Taxibuses, Camiones
- Biciclos

En caso de que existan diversos movimientos en una intersección, ellos deben contabilizarse con al menos dos observadores.

iii) **Unidades de medición de los flujos vehiculares**

Al cuantificar los flujos vehiculares estos se expresan en unidades/hora. Esta unidad presenta problemas desde el punto de vista de la agregación, pues al sumar los flujos de diferente categoría se obtiene una cantidad heterogénea. Para solucionar esto se han creado unidades de referencia a las que son convertidos los flujos mediante factores de equivalencia. Dos unidades son importantes:

- vehículo equivalente (veq), que corresponde a un automóvil particular.
- automóvil directo equivalente (ADE), que corresponde a un veq que sigue directo en una intersección.

Para efectos de cuantificar los flujos, basta con expresarlos en vehículos equivalentes (veq) y, para efectos de cuantificar la capacidad de una calle, los flujos deberán expresarse en automóvil directo equivalente (ADE), de acuerdo a lo explicado en el punto 3.6. En ausencia de datos locales, los flujos vehiculares pueden convertirse a vehículos equivalentes con los factores que se indican en la tabla siguiente:

<table>
<thead>
<tr>
<th>CATEGORÍA</th>
<th>FACTOR (veq/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automóviles Particulares</td>
<td>1,00</td>
</tr>
<tr>
<td>Taxis ocupados</td>
<td>1,00</td>
</tr>
<tr>
<td>Taxis vacíos</td>
<td>1,00 - 1,35 (1)</td>
</tr>
<tr>
<td>Buses y Microbuses</td>
<td>2,00</td>
</tr>
<tr>
<td>Taxibuses</td>
<td>1,65</td>
</tr>
<tr>
<td>Camiones</td>
<td>2,00 - 2,50 (2)</td>
</tr>
<tr>
<td>Biciclos</td>
<td>0,20 - 0,60 (3)</td>
</tr>
</tbody>
</table>

Tabla II: Factores de equivalencia de vehículos por categoría
(1): Depende del comportamiento en la zona del estudio, mientras más lento circulan mayor será el valor.

(2): Depende del número de ejes, a más ejes mayor veq/veh

(3): Depende del tipo particular de vehículo (bicicleta, moto, etc) y de las características físicas de la vía (pendiente, carpeta de rodado, etc).

Ejemplo 4: Conversión de vehículos a vehículos equivalentes (veq)

En una intersección se cuantificaron los siguientes flujos por hora, por categoría de vehículos. Para transformarlos en unidades equivalentes, dichos flujos deben ser convertidos a vehículos equivalentes con los factores de la Tabla II. Los resultados se indican en el mismo cuadro:

<table>
<thead>
<tr>
<th>Categoría de Vehículo</th>
<th>Flujos Vehiculares (veh/hr)</th>
<th>Factor</th>
<th>Vehículos Equivalentes (veq/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automóviles</td>
<td>1.330</td>
<td>1</td>
<td>1.330</td>
</tr>
<tr>
<td>Particulares</td>
<td>209</td>
<td>1</td>
<td>209</td>
</tr>
<tr>
<td>Taxis Colectivos</td>
<td>63</td>
<td>2</td>
<td>126</td>
</tr>
<tr>
<td>Buses</td>
<td>43</td>
<td>1.65</td>
<td>71</td>
</tr>
<tr>
<td>Taxibuses</td>
<td>12</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Camiones</td>
<td>11</td>
<td>2.05</td>
<td>27</td>
</tr>
</tbody>
</table>

TOTAL 1.666 1.787

iv) **Métodos de conteo de flujos vehiculares**

Los conteos de flujos vehiculares pueden realizarse en forma manual o por medios automáticos.

1) **Mediciones automáticas**

Son apropiadas para situaciones de recolección intensiva de gran cantidad de datos. Se realizan sobre ejes arteriales y no permiten distinguir con precisión los tipos de vehículos.

Conviene utilizar este método en aquellas situaciones en las cuales interesa registrar los flujos circulantes.
durante largos períodos de medición. No es posible distinguir movimientos, es decir los destinos de los flujos.

Entre los instrumentos a utilizar se encuentran los "clasificadores", que pueden distinguir automáticamente entre tres y cinco distintos tipos de vehículos por sus longitudes. Desgraciadamente, la desagregación por longitudes es absolutamente inadecuada, porque no es posible distinguir camiones de buses, y como se trata de rangos de longitudes, tampoco es posible distinguir entre taxibuses y microbuses o entre buses urbanos e interurbanos.

Estos medidores se colocan bajo la calzada y corresponden a espiras inductivas, las que conviene localizar a mitad de cuadra y no en las esquinas. Los manuales de ejemplo de este tipo de equipo, detallan las formas más apropiadas de organización de las espiras que se requieren, así como las características técnicas de los materiales más aptos para su implantación en terreno.

En el caso de conteos automáticos, es preciso realizar clasificaciones manuales de vehículos según las desagregaciones que se requieran en cada estudio. Estas agrupaciones suponen que la muestra sea tomada para un período de una hora representativa, a lo menos durante dos cuartos de hora no consecutivos. En lo posible debería contarse con información previa de conteos intensivos en áreas similares o en el mismo eje, a fin de permitir eliminar los "ruidos" que puedan aparecer en el posterior procesamiento computacional. Para éste, existe software asociado a cada tipo de equipos, aunque también puede diseñarse software ad-hoc según los requerimientos del estudio.

2) Conteos manuales

Los conteos manuales son más apropiados en intersecciones. Lo usual es que se utilice "contadores manuales" ("tally counters"), los cuales permiten contabilizar cuatro o cinco tipos de vehículos simultáneamente. Es decir, la clasificación de vehículos se hace mientras se cuenta.

Es importante disponer de un formulario de recolección de datos que sea fácil de utilizar, con instrucciones claras. El formulario debe contener los tipos de vehículos que se clasificarán, los diferentes
movimientos, el lugar y orientación, el día, hora, tamaño mínimo de muestra, método de llenado del formulario, etc.

En Anexo Nº 1 se muestra una hoja de recolección de flujos, la cual se puede utilizar en una intersección o en un eje. Los flujos deben ser contabilizados según el tipo de movimiento, el cual se dibuja en el croquis que está en la esquina superior derecha y se le asigna un número el que se indica en la columna correspondiente al movimiento. La cantidad de movimientos a registrar por observador no debiera ser mayor a tres. La hoja está diseñada para contabilizar los flujos durante una hora, dividiéndolos en períodos de 15 minutos.

Cuando se realizan conteos manuales, se debe tener presente las siguientes recomendaciones:

- los conteos deben subdividirse en períodos de 15 minutos.

- un observador no debería contar más de 400 vehículos por hora; para esto es necesario estimar previamente el orden de magnitud de los volúmenes a medir, a través de un pequeño muestreo en las horas aparentemente más cargadas del día. Cuando se disponga de varios observadores para realizar la medición, es recomendable especializarlos por pista o por tipo de vehículo, especialmente en el caso de altos porcentajes de locomoción colectiva.

- antes de enviar observadores a terreno, debe verificarse, a través de conteos simulados, la forma del material a usar: papel que se pliegue fácilmente, tamaño apropiado y conveniente, y debe proporcionarse entrenamiento adecuado a los observadores. El tiempo consumido en capacitación debiera considerarse siempre como bien invertido porque elimina muchos problemas posteriores (repeticiones costosas y no siempre fiables). El entregar, asimismo, antecedentes sobre los objetivos del trabajo a realizar y la importancia de él, es una tarea extremadamente útil para motivar al personal y lograr mayor eficiencia y precisión en su trabajo.

- es necesario contar con al menos un supervisor cada quince observadores. Este se encargará no sólo de la capacitación detallada del personal, sino que deberá llevar la bitácora del trabajo en
terreno. Dicha bitácora permitirá detectar, posteriormente, las causas de anomalías observadas cuando se procese la información, y eliminar así los errores cometidos. La provisión de un 5% de personal extra, para suplir los casos de personal que se atrasa, sobre todo en los primeros días de recolección, así como el de personas que no logran llegar a terreno por diversos problemas, es también aconsejable.

- es recomendable efectuar las mediciones en las salidas de las intersecciones a fin de detectar los movimientos o diferentes destinos de los flujos. Sin embargo, cuando se observan colas que no se disipan completamente durante el verde (es decir que una vez terminado el tiempo de verde, aún quedan vehículos que desean cruzar la intersección), se debe cambiar la localización de los lugares de medición desde la línea de parada hacia algún lugar aguas arriba que permita detectar la real demanda del arco en cuestión, y no la oferta que está saliendo a tasa máxima desde la línea de parada. Como norma, si los vehículos deben esperar durante más de un rojo frente al semáforo, es conveniente realizar las mediciones aguas arriba. Sin embargo, las clasificaciones de los diferentes movimientos deben realizarse siempre en la línea de parada; en este caso los valores obtenidos se tomarán sólo como una indicación porcentual de la demanda, que se deberá aplicar sobre la demanda real medida aguas arriba.

v) Periodización de los flujos vehiculares

Una vez que se ha contabilizado los flujos vehiculares en los días y horas representativos de la semana tipo, corresponde agruparlos en períodos. Este proceso se llama "Periodización" y corresponde a la clasificación del total de horas del año en grupos horarios de características internamente homogéneas, tanto en composición vehicular, nivel y repartos de flujos, así como en el patrón de los viajes. En vialidad urbana, es común que se presenten los siguientes períodos: punta de la mañana, punta de mediodía, punta de tarde y fuera de punta. En aquellos países o ciudades en los que existe una jornada única de trabajo, es decir, que no se corta a la hora de almuerzo, el período punta de mediodía no se presenta.

Es importante la periodización para la estimación de los beneficios del proyecto, pues cada período debe ser analizado separatamente. Esto es así porque cada período no tiene la misma duración y, por lo tanto, los flujos no se ponderan por el mismo factor para obtener los distintos tipos de beneficios (por ejemplo:
el período punta de la mañana puede durar entre 1,5 a 2 horas, mientras que el período fuera de punta dura aproximadamente 18 horas).

Existen métodos computacionales sofisticados para calcular la periodización. Para efectos del presente manual, se recomienda un método simplificado consistente en graficar los flujos respecto a los intervalos de tiempo en que fueron medidos. Es decir, el eje horizontal del gráfico se divide en intervalos de 15 minutos, anotando las horas en que fueron medidos los flujos vehiculares (ejemplo: desde las 7.00 hrs hasta las 23.00 hrs., con divisiones intermedias de 15 minutos) y, en el eje vertical se anotan los flujos vehiculares equivalentes que circularon por cada intervalo de tiempo medido. Posteriormente, se asocia el flujo con el intervalo respectivo y se marca en el gráfico con un punto o se dibuja una barra. Se procede así completar el total de los intervalos en que se midieron los flujos. Luego, mediante observación del gráfico resultante, se identifican los flujos consecutivos que presentaron un nivel similar y, de ese modo, se agrupa en períodos. Así, se obtienen los distintos períodos que se presentan dentro de un día, de acuerdo a los niveles de flujos vehiculares.

Gráfico 1: Periodización de los Flujos Vehiculares

![Gráfico 1: Periodización de los Flujos Vehiculares](image-url)
b) Flujos peatonales

En ciertos proyectos en que se presente congestión o se quiera rediseñar una intersección o vía, es importante cuantificar los flujos peatonales del área en estudio. Para ello, el método más usual es medir los flujos en ambos sentidos durante las horas representativas de los períodos seleccionados en los cruces peatonales.

Al contrario de los flujos vehiculares, en que se mide siempre según sentido, en el caso peatonal éste no importa, porque los flujos están entremezclados en la mayoría de los casos. Tampoco se presenta el fenómeno de saturación de los flujos vehiculares, ya que la oferta de espacio vial, salvo escasas ocasiones, es ilimitada para los peatones (sujeto obviamente a las restricciones operacionales de los mecanismos de control de las intersecciones).

Una clasificación del tipo de peatón es también útil, ya que los niños y ancianos tienen velocidades de desplazamiento diferentes a las de los adultos, y esa tipología podría tener incidencia en el diseño de los esquemas. En general es conveniente tener indicadores de peatones por minuto y por hora.

3.3.2 Tasas de ocupación

Es fundamental cuantificar el volumen vehicular, según la metodología explicada en el punto anterior, para determinar el grado de saturación u otro tipo de problema que pueda tener un eje o nudo vial y, así plantear determinadas soluciones. Sin embargo, para efectos de la evaluación del proyecto es necesario conocer además, el volumen de usuarios de la vía en estudio, que están padeciendo el "problema".

Para estimar la cantidad de usuarios que utilizan el eje o nudo en estudio, se determinan las tasas de ocupación de los distintos tipos de vehículos. En general, se calculan las tasas de ocupación de la locomoción colectiva y de los autos, de acuerdo a la descripción que se hace a continuación.

a) Vehículos de locomoción colectiva

La obtención de la tasa de ocupación en este caso presenta dificultades especiales, por la imposibilidad físico-temporal de poder contar las personas que ocupan cada vehículo muestreado.
La metodología específica consiste en que frente al lugar donde se recolectarán los datos, el observador registra la situación de ocupación del vehículo (taxibús o microbús) según cinco categorías. Para ello, previamente se muestrea sobre los vehículos la carga promedio que esas categorías representan. Se recomienda muestrear por tramos homogéneos ya sea entre dos paraderos o en longitudes de 400 a 500 metros, y en intervalos de 15 minutos que puedan ser posteriormente agregados.

Se debe tener especial cuidado de realizar la muestra de forma aleatoria. Para determinar la tasa de ocupación media, se debe calcular un promedio ponderado de los factores de ocupación promedio por categoría definida. A modo de ejemplo, en la siguiente tabla se indican las tasas de ocupación promedio determinadas para la ciudad de Santiago de Chile. Estas podrán utilizarse en otras ciudades o países, de acuerdo a un previo chequeo de su validez:

<table>
<thead>
<tr>
<th>CATEGORÍA</th>
<th>PASAJEROS PROM. EN TAXIBUS</th>
<th>PASAJEROS PROM. EN BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>44,2</td>
<td>83,1</td>
</tr>
<tr>
<td>B</td>
<td>34,5</td>
<td>56,7</td>
</tr>
<tr>
<td>C</td>
<td>27,3</td>
<td>41,6</td>
</tr>
<tr>
<td>D</td>
<td>18,3</td>
<td>26,0</td>
</tr>
<tr>
<td>E</td>
<td>9,4</td>
<td>12,4</td>
</tr>
</tbody>
</table>

Las categorías definidas son:

A: El vehículo completamente ocupado con pasajeros hasta en la pisadera,
B: Más de la mitad del pasillo con pasajeros de pie,
C: Menos de la mitad del pasillo ocupado con pasajeros de pie,
D: Más de la mitad de los asientos ocupados,
E: Menos de la mitad de los asientos ocupados.

b) Autos y otros vehículos
En este caso el proceso resulta más sencillo, dada la menor capacidad de pasajeros. La metodología consiste en muestrear, de acuerdo a las consideraciones estadísticas, que avalen la representatividad del tamaño muestral empleado, contando en cada caso el número de pasajeros que ocupa el vehículo y anotando en una hoja de trabajo las cifras respectivas. La tasa de ocupación media será el promedio de todas las cifras obtenidas.

El observador debe ubicarse en un lugar donde se produzcan detenciones para observar más fácilmente a los pasajeros. Cuando ello no es posible (por ejemplo en medio de un enlace en un eje arterial con vehículos a velocidad), es recomendable tomar una cierta distancia de los flujos a fin de poder registrarlos con mayor precisión.

3.3.3 Encuestas Origen-Destino
Las Encuestas Origen - Destino sólo son necesarias en casos en que la ejecución del proyecto genere reasignación de flujos y, dado su costo, sólo se justifica si el estudio de preinversión que se está realizando es a nivel de prefactibilidad o factibilidad.

A continuación se describen los tipos de encuestas origen-destino más conocidos:

a) Método de las patentes
Este método consiste básicamente en ubicar observadores a la orilla de la vía, en todas las entradas y salidas del área de estudio, a fin de que anoten el número de la patente (y a veces el tiempo de pasada) de cada vehículo. Posteriormente, se deducen las rutas seguidas por los vehículos al hacer calzar los números de las patentes de los vehículos que entraron con las de los vehículos que salieron del área de estudio.

4 Las entradas se refieren a los accesos directos que existen al área en estudio y las salidas corresponden a las calles que permiten egresar de dicha área.
Esta técnica es una de las más conocidas y utilizadas, sin embargo tiene problemas de sesgos. Es especialmente apropiada para seguir los desplazamientos del tránsito en situaciones caracterizadas por un gran número de orígenes y destinos enlazados por un sistema de calles complejo. La gran desventaja del método es que se requiere un gran esfuerzo para el análisis y procesamiento de los datos.

Considerando que este método de encuesta es el más utilizado, se dan a continuación algunas recomendaciones para el éxito de ella:

- **Demarcación del área de estudio**

 Se aconseja acordonar el área de estudio, aun cuando no es una medida obligatoria. Además, es útil colocar estaciones intermedias que permitan identificar las rutas alternativas por donde se reparten los flujos, cuando existen varios caminos alternativos.

- **Tiempo de realización de la encuesta**

 El tiempo de realización de la encuesta debe tomar en cuenta el tiempo de viaje promedio entre las entradas y salidas del área de estudio, a fin de evitar los períodos inútiles en que no habrá pareamiento de patentes. No es conveniente particionar en intervalos de 15 minutos por el desfase entre entradas y salidas. Se estima que el tiempo mínimo de la encuesta debe ser de media hora, pero se aconseja realizarla durante una hora sin interrupción.

- **Forma de muestrear**

 Generalmente se escoge un porcentaje que varía entre el 20 % y el 50 % de los vehículos, tomando, por ejemplo, sólo las patentes que terminan en 1 y 2; siendo conveniente, de acuerdo a algunos estudios realizados en Chile y Australia, registrar los últimos cuatro dígitos de las patentes, con el fin de no cometer errores o duplicación en el apareamiento de las patentes. Además, se recomienda que el encuestador se encargue solamente de una dirección de movimiento, porque la posibilidad de error al hacerlo en dos direcciones, se puede incrementar si no se cuenta con personal altamente calificado.

- **Empleo de equipo**

 Para el caso de calles con poco flujo vehicular, se recomienda realizar la encuesta en forma manual, con
hoja, papel y cronómetro (si se quiere aprovechar de medir tiempos de travesía entre origen y destino). En calles con mayor volumen vehicular, se recomienda emplear grabadoras, siendo conveniente registrar no sólo la patente, sino que también cada cierto tiempo (un minuto) la hora en que se está grabando.

En casos en que la vía en estudio presente alto flujo vehicular, es altamente recomendable utilizar microcomputadores que incorporan en forma automática el tiempo de pasada, y en que sólo se ingresan los números con un dígito, el cual individualiza si se trata de un auto, bus u otro tipo de vehículo. Es aconsejable contar con dos personas por punto de trabajo, una dicta el número y el instante de pasada y el otro, se concentra en registrar los datos en el microcomputador.

Otro método bastante eficaz, corresponde al empleo de filmadora portátil, en las entradas y salidas del área de estudio; la cual permite registrar las patentes y los tiempos de pasada de los vehículos. Luego, se procede a pasar la filmación en cámara lenta, con el fin de efectuar el pareamiento de las patentes.

- **Procesamiento de la encuesta**

Cualesquiera sea el método de tomar la encuesta; manual, con grabadoras, video o computacional, es conveniente que se procese la información en forma computacional, dadas las características de este tipo de trabajo.

b) Encuesta en la vía

Este método consiste en detener los vehículos a la entrada del área de estudio respectivo, haciéndoseles a los conductores un conjunto de preguntas predeterminadas acerca de su viaje (destino, propósito, etc.).

Este tipo de encuesta es útil para obtener información que no sea fácil de conseguir por observación directa. Para el éxito de ella, debe ser muy corta, precisa, y no sujeta a interpretaciones por parte del entrevistador y el entrevistado. Presenta gran problema en las avenidas arteriales con muchas pistas, porque se puede producir un sesgo en los vehículos que son detenidos (aquellos más cercanos a la acera o a la mediana que es donde se colocan los entrevistadores). Su procesamiento es fácil y directo.
c) Método del ticket

Este método consiste en que a los vehículos muestreados en las entradas del área de estudio, se les coloca un ticket de color determinado. En la salida, el color permite identificar el lugar de entrada.

Existe una técnica semejante, que se ha empleado en algunos países, donde al conductor se le entrega un ticket con un número y debe devolverlo a la salida. Obviamente esto requiere de un alto grado de cooperación por parte de los entrevistados. En redes pequeñas y no muy saturadas puede ser de utilidad.

3.4 Determinación de los tiempos de viaje actuales

La determinación de los tiempos de viaje promedio por categoría de vehículos es un trabajo útil para establecer la posible existencia de congestión y su nivel. Además, es fundamental para efectos de calcular beneficios por ahorros de tiempo en la evaluación social de los proyectos.

La cuantificación de los tiempos de viaje, puede hacerse por diferentes medios. A continuación se describen los métodos más utilizados:

a) Método de persecución de un vehículo

Se selecciona un vehículo al azar, que represente el movimiento promedio de la corriente de vehículos (distinguiendo entre vehículos particulares y de la locomoción colectiva). Con otro vehículo, se sigue al seleccionado, lo más cerca posible, en todas sus maniobras desde el punto de partida escogido hasta una salida previamente seleccionada. Como se desconoce el destino del vehículo, este método es más útil en el caso de ejes arteriales, en que normalmente el grueso del tráfico sigue el corredor y hay pocos desvíos laterales. En general, este método es más recomendable para los tiempos de viaje de la locomoción colectiva que de los autos.

5 Consideraciones estadísticas: Para todos los métodos explicados, se recomienda tomar 24 observaciones como mínimo para los vehículos de locomoción colectiva y para los vehículos particulares, es aconsejable un tamaño muestral de 7 observaciones como mínimo.
b) **Método de las patentes**

Este es el mismo método explicado anteriormente para la determinación de las matrices origen -destino de viajes. Conjuntamente con el registro de la patente del vehículo se debe tomar el tiempo de pasada. Así, en el momento de pareamiento de las patentes, se obtienen los tiempos de viaje al hacer la diferencia entre la hora de pasada a la salida y el tiempo de pasada a la entrada del área de estudio.

Cabe mencionar que en el caso de patentes conformadas por letras y dígitos, se recomienda registrar la totalidad de la patente o, si no es posible, y se registran sólo los números, se deberá establecer previamente un tiempo mínimo y un tiempo máximo de recorrido. De esa manera se evita tomar como observaciones de un mismo vehículo, las de vehículos que puedan tener los mismos cuatro dígitos pero diferentes letras iniciales.

c) **Método del vehículo flotante**

Este método es especialmente útil para determinar los tiempos de recorrido de vehículos particulares. Consiste en realizar recorridos mediante un vehículo denominado "auto test", el cual trata de mantenerse en la corriente vehicular, sin ser sobrepasado ni sobrepasar (o siendo pasado por tantos vehículos como él ha pasado).

3.5 Proyección de la demanda

Con el objeto de determinar el comportamiento de la operación vehicular en el período en que se evaluará el proyecto, es necesario proyectar, tanto en la situación actual como en la futura situación con proyecto, la demanda para un horizonte de evaluación que, en general, es de 20 años para proyectos de vialidad urbana.

Para ello, deben estimarse los flujos vehiculares futuros, separados por categoría de vehículos, y también las tasas de ocupación vehicular, para cada uno de los años del horizonte de evaluación del proyecto.

a) **Estimación de las tasas de crecimiento de las tasas de ocupación**

- **Vehículos sin itinerario fijo (vehículos particulares y taxis)**

 Se recomienda estimar las tasas de crecimiento basándose en un análisis de la información.
histórica experimentada por las tasas de ocupación del área en estudio, o de otra de similares características.

- **Vehículos con itinerario fijo (del transporte público)**
Se debe analizar las tasas de ocupación promedio de los vehículos del transporte público. Si dichas tasas son bajas (menores al 50 % de la capacidad del vehículo), es conveniente aplicar una tasa de crecimiento del flujo de pasajeros, las que se pueden estimar en base a las tasas de crecimiento esperadas de la población del área de estudio.

Una vez que las tasas de ocupación alcancen un nivel máximo de 75 % de la capacidad del vehículo corresponderá aplicar tasas de crecimiento a los flujos vehiculares, las que se pueden estimar de acuerdo a las tasas de crecimiento de los viajeros (anteriormente calculadas).

b) Estimación de las tasas de crecimiento de los flujos vehiculares

- **Vehículos sin itinerario fijo (vehículos particulares y taxis)**
En estos casos, se recomienda estimar tasas de crecimiento a partir de una serie histórica de conteos de flujos, determinándose la tasa de crecimiento anual. Los conteos debieran corresponder al área de referencia, sin embargo si no existieran se podrá utilizar información disponible para un área de similares características (población, nivel de ingreso, tasa de motorización, sistema de actividades, etc. Esta tasa de crecimiento se aplicará anualmente a los vehículos particulares, pudiendo ser autos y taxis.

- **Vehículos con itinerario fijo (del transporte público)**
En este caso, se recomienda estimar las tasas de crecimiento de acuerdo al método explicado en la letra a).

3.6 Determinación de la oferta actual

La oferta de una vía está determinada por una serie de factores, siendo los principales: la capacidad de ella, su nivel de congestión, sus características geométricas y su carpeta de rodado.
3.6.1 Capacidad de una vía

La capacidad de una vía se define como el número máximo de vehículos que puede acoger cada pista, lo que se denomina flujo de saturación. Este se puede obtener contabilizando el número de vehículos que contiene la vía cuando están impedidos de avanzar.

Si dichas condiciones de saturación no se dan, se puede utilizar un flujo de saturación base por pista (cuyo ancho normal oscila entre 3 y 3,5 mts.). Este flujo se debe corregir de acuerdo a las características especiales de la vía en estudio: gradiente, estacionamiento de vehículos, paradero de locomoción colectiva, virajes e intersecciones semaforizadas, entre otras.

En la tabla siguiente se entregan algunos valores de flujos de saturación base, en unidades de vehículos ligeros que siguen directo en una intersección (ADE):

<table>
<thead>
<tr>
<th>Tabla IV: Flujos de saturación base (ADE/hr-pista)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Punta</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fuera de Punta</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Se entiende por buen ambiente una situación sin interferencia peatonal, buena visibilidad y buena alineación horizontal y vertical. La situación contraria corresponde a mal ambiente, luego, por definición, no existirá "buen ambiente" en las zonas céntricas. Por ambiente normal se entiende una situación intermedia entre ambas situaciones descritas anteriormente.
Las correcciones que deben a efectuarse al flujo de saturación base son las siguientes:

a) Corrección por gradiente
Corresponde realizar una corrección a los flujos de saturación base, de un 1% por cada 3% de gradiente o pendiente (positiva o negativa). El gradiente (pendiente) debe medirse 60 metros aguas arriba de la línea de parada de la pista o calle considerada. Es decir, los flujos de saturación base deben disminuirse en un 1% por cada 3% de gradiente o pendiente de la vía en estudio.

Ejemplo 5: Corrección del flujo de saturación por gradiente

Se desea determinar el flujo de saturación de una vía de tres pistas de circulación, ubicada fuera del centro, en mal ambiente, y que presenta una gradiente de 7%.

Cálculo de la corrección:
Los flujos de saturación base por período, son:
Periodo punta y fuera de punta: 1.620 ADE/hr-pista, es decir, 4.860 ADE/hr-vía

Se debe efectuar corrección por gradiente al flujo de saturación base, equivalente a disminuir ese flujo en 1% por cada 3% de gradiente.
En este caso, la corrección es (7/3) % del flujo.
Luego, el flujo de saturación corregido es:
1.620 - 38 = 1.582 ADE/hr-pista, o, 4.746 ADE/hr-vía

b) Corrección por vehículos estacionados
Considerando que al permitirse el estacionamiento en los extremos izquierdo y/o derecho de la vía, se reduce la capacidad de ésta, corresponde descontar del flujo de saturación base de las pistas que son obstruidas por los vehículos estacionados, una magnitud en vehículos equivalentes por hora igual a 20*(60-d). Donde "d" es la distancia, en metros, desde el inicio de la vía en estudio hasta el primer vehículo estacionado aguas arriba. La distancia "d" debe ser menor a 60 metros.
Ejemplo 6: Corrección del flujo de saturation por vehículos estacionados

Se desea determinar el flujo de saturation de una vía de tres pistas en la que se permite estacionar vehículos a un lado de la calzada. La vía está ubicada en zona céntrica y existe ambiente normal de operación. Los vehículos se estacionan a una distancia "d" = 5 metros, desde el inicio de la vía.

Cálculo de la corrección:

Los flujos de saturación base por período, son:
Período Punta : 1.600 ADE/hr-pista, es decir, 4.800 ADE/hr-vía
Período Fuera Punta : 1.520 ADE/hr-pista, es decir, 4.560 ADE/hr-vía

Se debe efectuar corrección por vehículos estacionados al flujo de saturación base.
La corrección es:
20 * (60-d) = 20 * 55 = 1.100 ADE/hr-vía.

Luego, el flujo de saturación corregido es:
Período Punta : 4.800 - 1.100 = 3.700 ADE/hr-vía
Período Fuera Punta : 4.560 - 1.100 = 3.460 ADE/hr-vía

c) Corrección por paradero de locomoción colectiva
Para la pista obstruida por el paradero, se debe descontar al flujo de saturation una cantidad expresada en veq/hr, de 30*p*(60-d), donde "p" es el porcentaje del tiempo que hay al menos un bus en el paradero y "d" tiene la misma definición indicada en el párrafo anterior.

d) Corrección por viraje
Cuando existan pistas en que todos los vehículos giren a la izquierda o a la derecha, con fase propia, se puede estimar el flujo de saturación dividiendo el flujo de saturación base por el factor de corrección (1+1.5/r), donde "r" es el radio de giro en metros⁶. Valores típicos para "r" son: 5 metros para giros muy bruscos, 10 metros para giros normales y 15 metros para giros amplios.

⁶ Otra posibilidad, para los proyectos de Santiago de Chile, es multiplicar el flujo de saturación base por 0.85 (Coeymans y Nely, 1984).
Ejemplo 7: Corrección del flujo de saturación por paradero de locomoción colectiva

Una vía céntrica de condiciones normales de operación, se ha dividido en tres sectores de acuerdo a sus características físicas. En ellos existen paraderos de locomoción colectiva, en los que los parámetros "p" y "d" se indican a continuación. Calcular el flujo de saturación de cada sector.

<table>
<thead>
<tr>
<th>Sector</th>
<th>longitud (metros)</th>
<th>p (%)</th>
<th>d (m)</th>
<th>Flujo Saturación Base Período Punta</th>
<th>Flujo Saturación Base Período Fuera Punta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>25 %</td>
<td>40</td>
<td>1.600</td>
<td>1.520</td>
</tr>
<tr>
<td>2</td>
<td>350</td>
<td>30 %</td>
<td>50</td>
<td>1.600</td>
<td>1.520</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>30 %</td>
<td>45</td>
<td>1.600</td>
<td>1.520</td>
</tr>
</tbody>
</table>

Cálculo de la corrección:

Los factores de corrección y los flujos corregidos son:

<table>
<thead>
<tr>
<th>Sector</th>
<th>Factor de corrección 30P(60-d)</th>
<th>Flujo Saturación Corregido Período Punta</th>
<th>Flujo Saturación Corregido Período Fuera Punta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>1.450</td>
<td>1.370</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>1.510</td>
<td>1.430</td>
</tr>
<tr>
<td>3</td>
<td>135</td>
<td>1.465</td>
<td>1.385</td>
</tr>
</tbody>
</table>

e) Corrección por intersección semaforizada

Se considera que la capacidad de una intersección semaforizada está dada por su flujo de saturación "real" (flujo de saturación base con las correcciones correspondientes) ponderado por el cuociente entre el tiempo de verde que disponen los usuarios de la pista en un ciclo del semáforo y el tiempo que demora en completar un ciclo. Naturalmente, esto requiere la medición en terreno de los tiempos de verde del semáforo y del tiempo que demora en dar la misma señal dos veces (tiempo de ciclo).
Ejemplo 8: Corrección del flujo de saturación por viraje

En una intersección localizada en mal ambiente operacional y fuera del centro, se permite virar a la izquierda a los vehículos que transitan de norte a sur. El radio de giro es de 12 metros. Se requiere calcular el flujo de saturación de la vía en la que se originan los giros, sabiendo que ella tiene dos pistas de circulación.

Cálculo de la corrección:

El flujo de saturación para ambos períodos es de 1.620 ADE/hr-pista, es decir, 3.240 ADE/hr-vía. El factor de corrección es

\[(1 + 1.5/r) = (1 + 1.5/12) = 1.125 \]

Luego, el flujo de saturación corregido es \(3.240 / 1.125 = 2.880 \) ADE/hr-vía

Ejemplo 9: Corrección del flujo de saturación por intersección semaforizada

Se desea determinar el flujo de saturación de una intersección localizada en zona céntrica, con condiciones normales de operación, la que está semaforizada siendo el tiempo de verde de 30 segundos y el tiempo de ciclo del semáforo de 60 segundos.

Cálculo de la corrección:

Los flujos de saturación por períodos, son:

- **Período Punta**: 1.600 ADE/hr-pista
- **Período Fuera Punta**: 1.520 ADE/hr-pista

Corresponde efectuar corrección por tratarse de una intersección semaforizada. El factor de corrección es: \(30/60 = 0.5 \)

Luego, los flujos de saturación corregidos, son:

- **Período Punta**: \(1.600 \times 0.5 = 800 \) ADE/hr-pista
- **Período Fuera Punta**: \(1.520 \times 0.5 = 760 \) ADE/hr-pista

Finalmente, el flujo de saturación de una vía corresponderá a la suma de los flujos de saturación de las pistas que la conforman, si bien la presencia de pistas exclusivas para un cierto tipo de desplazamiento (pistas exclusivas de viraje, por ejemplo) hace recomendable tratarlas separadamente para la medición de su grado de saturación.
3.6.2 Determinación del grado de congestión y de la capacidad de reserva de una vía

Se define como Grado de Congestión o Saturación de una vía al cuociente entre el número de vehículos que hacen uso de la vía y el flujo de saturación de la misma. Este valor se debe determinar para cada período del día, en que se han contabilizado los flujos vehiculares.

Matemáticamente, esto se expresa así:

Fórmula 1: Grado de congestión período (1)

\[
\text{Grado de congestión período } i = \frac{q_i}{q_{si}}
\]

donde:
\(q_i \) : Flujo de vehículos en el período \(i \) (ADE/hr)
\(q_{si} \) : Flujo de saturación de vehículos en el período \(i \) (ADE/hr)

En general este valor debiera ser inferior a 1, si bien en algunos períodos especialmente críticos del día pudiera superar dicho valor, lo que se aprecia al generarse colas. En términos genéricos, es posible hablar de congestión para una vía o pista en particular si el grado de saturación resulta permanentemente superior a 0,9, durante el día.

Se define una Capacidad de Reserva de una vía al nivel que le falta para alcanzar la saturación. Por tanto, se expresa como uno menos el grado de congestión período \(i \).

Fórmula 2: Capacidad de reserva período

\[
\text{Capacidad de reserva período } i = 1 - \frac{q_i}{q_{si}}
\]

3.6.3 Características geométricas de la vía

Dependiendo del tipo de proyecto que se trate, será necesario profundizar en la descripción de las características geométricas de la vía. Considerando que esta metodología está desarrollada para evaluar proyectos a nivel de perfil, se deberá al menos indicar el ancho de la vía, el número de pistas y si estas
Ejemplo 10: Grado de congestión y capacidad de reserva de una vía

Determinar el grado de congestión y la capacidad de reserva de una vía de tres pistas de circulación, localizada en zona céntrica con mal ambiente operacional. Se sabe que el flujo promedio en periodo punta es de 3.800 ADE/hr-vía y el correspondiente al periodo fuera de punta es de 2.600 ADE/hr-vía.

Cálculo del grado de congestión:

El flujo de saturación base, de acuerdo a lo indicado en la tabla IV es 1.360 ADE/hr-pista, para los periodos punta y fuera de punta. Entonces el flujo de saturación base total de la vía es de 4.080 ADE/hr.

Luego, el grado de congestión para cada período es:

<table>
<thead>
<tr>
<th>Período</th>
<th>Flujo</th>
<th>Saturación base</th>
<th>Grado de congestión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punta</td>
<td>3.800</td>
<td>1.360</td>
<td>93.3%</td>
</tr>
<tr>
<td>Fuera Punta</td>
<td>2.600</td>
<td>1.360</td>
<td>64.0%</td>
</tr>
</tbody>
</table>

Cálculo de la capacidad de reserva:

<table>
<thead>
<tr>
<th>Período</th>
<th>Flujo</th>
<th>Reserva de capacidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punta</td>
<td>1 - 0.93</td>
<td>0.07</td>
</tr>
<tr>
<td>Fuera Punta</td>
<td>1 - 0.64</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Por lo tanto, la vía en análisis presenta congestión en el periodo punta, pero no en el resto del día, en que existe un 36% de reserva de capacidad.

varían a lo largo del eje o vía en estudio. En caso, que ésta tenga pendiente o gradiente, se deberá especificar el porcentaje de inclinación.

3.6.4 Carpeta de rodado de la vía en estudio

Describir el material que conforma la carpeta de rodado de la vía en estudio constituye la última variable a considerar en la descripción de la oferta de infraestructura de transporte existente en la situación actual. Se debe señalar si la calzada de la vía es de ripio, asfalto u hormigón y en que condiciones está dicha carpeta.

La descripción de la carpeta de rodado es especialmente importante en aquellos proyectos cuyo objetivo es cambiar la calidad de ella, es decir, pasar de ripio a pavimento.

El estado de la carpeta de rodado se mide a través de la Rugosidad de ella. Esta se define como la variación de cota de una calle o un camino, a partir de una referencia de un pavimento totalmente liso,
sobre el cual no se originan vibraciones en un vehículo. La rugosidad es posible medirla a través de un instrumento llamado "Perfilómetro", el cual basa sus medidas en la obtención del perfil longitudinal de la vía.

Existen dos grupos principales de Perfilómetros: los estáticos y los dinámicos. Los sistemas estáticos logran medidas más exactas del perfil longitudinal, sin embargo su bajo rendimiento y alto costo los hace inadecuados para estudios que no sean muy precisos. Entre los perfilómetros dinámicos, los más conocidos son los del tipo APL (francés) y los del tipo SPD (norteamericanos). Estos métodos son más rentables y bastante precisos. Con estos instrumentos, se puede auscultar longitudes de hasta 300 km diarios o más.

La rugosidad de una calle o camino tiene como unidad de medida internacional el BJ, que significa Indice de Rugosidad Internacional y se expresa en m/Km, también se usa el índice BJ, el cual expresa la rugosidad en mm/km. Conociendo el IRI, de una calle se puede determinar el BJ, a través de la siguiente relación BI=630*IRI (1.12). En vialidad urbana, el IRI varía normalmente entre 2000 y 4000 mm/Km. Por tanto, para estudios a nivel de perfil, se puede asumir que una carpeta de rodado de pavimento en malas condiciones tiene una rugosidad de aproximadamente 4000 mm/Km y pavimentos buenos tienen una rugosidad del orden de los 2000 mm/Km.

Las carpetas de rodado sin pavimentar tienen rugosidades que pueden variar entre 3.800 y 15.000 mm/km, donde las carpetas bien cuidadas alcanzan valores cercanos a 3.800 mm/km y en las sin cuidar el BI fluctúa entre 8.500 y 15.000 mm/km.

Los valores anteriormente señalados tienen especial importancia para calcular los costos de operación de las situaciones sin y con proyecto, los cuales se explican en el capítulo correspondiente a "Evaluación de alternativas de proyecto".
4 Identificación y definición de alternativas de solución

El objetivo de este capítulo es entregar algunos elementos necesarios para la definición e identificación de alternativas, que resulten adecuadas y consistentes con el diagnóstico del problema. Se indica la necesidad de realizar una optimización de la situación actual y que aspectos estudiar para ello. Luego se detalla como efectuar la identificación y análisis preliminar de alternativas.

Como resultado del diagnóstico se obtiene la identificación, cuantificación y dimensionamiento del problema vial en el área de estudio. Durante este proceso se generan, usualmente, algunas ideas de alternativas de solución. Incluso, es frecuente que, desde la identificación del problema, algunos de los actores involucrados planteen y definan una alternativa de proyecto.

Así, para dar solución al problema identificado en el diagnóstico, se da inicialmente un conjunto de alternativas de solución, cada una de las cuales presenta características específicas, costos y beneficios que deberían tomarse en cuenta al momento de optar por una de ellas. Estas alternativas deben detallarse y analizarse en forma sistemática, sin descartar a priori ninguna de ellas.

Se recomienda tratar de generar más de una alternativa de solución al problema, solo así es posible alcanzar una mayor eficiencia en el uso de los recursos.

La definición de alternativas de solución debiera considerar los siguientes puntos:
- Optimización de la situación actual
- Identificar las posibles alternativas de proyectos
- Descripción de las alternativas

4.1 Optimización situación actual

La evaluación de un proyecto implica comparar entre sí diversos cursos de acción. Los indicadores de rentabilidad social que se obtienen son por lo tanto relativos. Para darles un sentido homogéneo, se define una situación base, (situación actual) contra la cual, una vez optimizada, se comparan las diversas opciones de proyecto propuestas.
La situación actual o base corresponde a la realidad observada cuando se ha detectado el problema. Sin embargo, no es correcto comparar las opciones de proyecto con la situación base, pues se pueden sobrevalorar los beneficios del proyecto, si la situación base puede ser mejorada sin incurrir en costos mayores.

Entonces, lo que corresponde es optimizar la situación base o actual con mejoramientos que signifiquen, cuando más, inversiones marginales. En general, estos mejoramientos equivalen a implementar medidas de gestión, cuya rentabilidad casi siempre está asegurada.

La inversión incurrida en optimizar la situación base no debería superar el 10% de la inversión media de las alternativas en estudio. En aquellos casos en que esa inversión supere dicho porcentaje, se recomienda evaluar la situación base en relación a la situación actual (sin optimizar). Si la inversión que se propone para optimizar la situación actual es mayor al 20% de la inversión media de las opciones de proyecto, se debe evaluar dicha situación como una alternativa más y cambiar la situación base optimizada.

A continuación se describen algunas medidas tipos de proyectos de gestión que pueden utilizarse para optimizar la situación actual. No obstante, también pueden constituir opciones de proyecto, dependiendo del problema que se quiere resolver.

- **Pistas de viraje:**
Es posible que la situación actual presente congestion, generada por un conflicto entre dos o más movimientos, en que al menos uno realiza viraje, impidiendo un mejor aprovechamiento de la infraestructura disponible (e.g. virajes a izquierda deben esperar una brecha en el flujo que transita en sentido contrario, deteniendo a aquellos que intentan continuar).

La solución en este caso no requerirá aumentar la capacidad de la vía en análisis, sino que sólo bastará con habilitar una pista de viraje que almacene a los vehículos que esperan realizar el movimiento, permitiendo que el resto de los vehículos opere sin interrupción.
Este tipo de proyectos se aborda cuantificando el número de vehículos equivalentes que realiza el viraje, por unidad de tiempo, con el fin de detectar si el problema realmente proviene de esa situación. Luego, los beneficiados con el proyecto serán todos los usuarios de la vía en estudio, ya que tanto los que giran como los que siguen derecho podrán disminuir el tiempo total de viaje con el proyecto de gestión implementado.

- **Prohibición de virajes:**
La realización de un viraje puede generar conflictos importantes, poniendo incluso en peligro la seguridad de los involucrados, como por ejemplo la realización de virajes a la izquierda enfrentando dos o más pistas de circulación, donde la posibilidad de encontrar una brecha que permita ejecutar la maniobra es escasa y presenta alto riesgo. En estos casos, una alternativa de gestión, que no implicará inversiones importantes, será impedir el movimiento de viraje, generando e indicando ruteos alternativos al actual, para quienes requieran virar.

Otra alternativa que también permitiría solucionar el problema sería habilitar una tercera fase al semáforo, la cual sería utilizada sólo por los vehículos que giran. Por supuesto esta medida debe aplicarse en aquellos casos en que el flujo de los vehículos que giran, cuantificados en vehículos equivalentes, sea significativo respecto al flujo total de la vía.

- **Demarcaciones:**
Eventualmente, una vía mal demarcada genera fricción entre los usuarios, ya que no está claro que movimientos se permiten en una pista ni cuáles son los límites de ésta. El señalar claramente cuál es la pista de circulación y los movimientos que alberga puede permitir un aumento importante en la seguridad y condiciones de operación de la vía.

- **Prohibición de estacionamientos:**
Como se señaló en la determinación de la oferta, la presencia de estacionamientos disminuye la capacidad de la vía, por lo que su eliminación puede permitir reducciones importantes en el índice de congestión. Sin embargo, medidas de este tipo deben considerar que los usuarios requieren de espacios físicos para estacionar sus vehículos, por lo que se deben generar espacios alternativos.
En la tabla que se muestra a continuación, se indica la reducción del ancho efectivo de las calles, debido a los autos estacionados.

Tabla V: Efecto del estacionamiento de vehículos en el ancho efectivo de las calles

<table>
<thead>
<tr>
<th>Número de vehículos estacionados por km (1)</th>
<th>Reducción efectiva del ancho de la calle (metros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0,9</td>
</tr>
<tr>
<td>6</td>
<td>1,2</td>
</tr>
<tr>
<td>19</td>
<td>1,8</td>
</tr>
<tr>
<td>31</td>
<td>2,1</td>
</tr>
<tr>
<td>63</td>
<td>2,6</td>
</tr>
<tr>
<td>125</td>
<td>3,0</td>
</tr>
<tr>
<td>316</td>
<td>3,7</td>
</tr>
</tbody>
</table>

(1): Si la vía es de un sólo sentido, se debe tomar en cuenta los vehículos estacionados a ambos costados de ella. Si es bidireccional, cada sentido debe ser analizado separadamente, y como consecuencia en este caso sólo se contabilizarán los autos estacionados al lado respectivo.

- **Pistas exclusivas:**

Cuando se observa conflictos entre dos categorías de vehículos que comparten una vía, los cuales pueden estar ocasionando accidentes frecuentes, como ser vehículos particulares con buses, la solución más apropiada es habilitar pistas exclusivas para un tipo de vehículo (e.g. pista sólo buses). De este modo se evita que ambos tipos de vehículos interfieran en sus movimientos.
Esta medida da muy buenos resultados, pero requiere un periodo de entrenamiento tanto para los conductores como para los usuarios del transporte público.

- **Instalación de semáforos:**

La regulación de un cruce mediante semáforo es una alternativa que permite reducir accidentes y disminuir las demoras que sufren peatones y vehículos en una intersección de prioridad. Sin embargo, su instalación requiere ser justificada mediante estudios técnicos y bajo condiciones mínimas de flujos vehiculares, presencia de demoras excesivas en el acceso secundario (no prioritario) o número elevado y sistemático de accidentes de consideración en el cruce. A modo de ejemplo, el Manual de Señalización de Tránsito (MINTRATEL, Chile, 1982) considera:

 - **Volumen vehicular mínimo:**
 En una intersección de una pista de ingreso para la arteria prioritaria y una pista de ingreso para la arteria secundaria, un flujo mínimo de 500 veh/hr en la vía prioritaria y al menos 150 veh/hr, en la secundaria. Estas condiciones mínimas se deben verificar durante, al menos, 8 horas en un día normal.

 - **Demoras excesivas:**
 Bajo las mismas condiciones del caso anterior, los volúmenes vehiculares mínimos son: 750 veh/hr en la arteria prioritaria y 75 veh/hr en la secundaria.

 - **Accidentes:**
 El manual requiere que el riesgo de accidentes sea manifiesto y que hayan ocurrido 5 o más accidentes de cierta consideración por año, en los últimos 3 años.

Los proyectos de instalación de semáforos constituyen en general proyectos de gestión que pueden ser comparados con una situación actual en la que exista señalización de prioridad, como: "ceda el paso" o "disco pare".
Optimización de semáforos:

En una intersección semaforizada, la modificación de las condiciones de flujo con respecto al momento de la instalación del semáforo, puede dar origen a demoras excesivas y problemas de operación del nudo. Una forma de observar la necesidad de actualizar la programación del semáforo, que requiere de estudios técnicos especializados, es observando si la distribución de tiempos de verde resulta suficiente o excesiva, para cada flujo y en distintos períodos del día.

Los semáforos se pueden optimizar en forma individual, si el problema sólo es local, o bien a lo largo de un eje o red, sincronizándolos, de modo que los vehículos que vienen por la vía "optimizada" tengan la posibilidad de enfrentar sólo "luces verdes". Esta optimización se realiza mediante modelos computacionales, siendo el más usado el TRANSYT.

4.2 Identificación de las alternativas de proyecto

Una vez que se ha definido la situación base optimizada, corresponde identificar alternativas de proyecto que en mayor o menor medida darán solución al problema vial en estudio. Dichas opciones se compararán luego con la situación base optimizada.

Como se mencionó en el punto anterior, la optimización de la situación base estará dada por inversiones de bajo monto, que por lo general serán medidas de gestión, como las anteriormente explicadas.

Un proyecto representa una transformación de la situación base para alcanzar objetivos determinados. Pero él puede materializarse de diferentes formas, que difieren sensiblemente en sus características físicas u operacionales, pero no en el tipo y ámbito de los impactos que producen. Estas formas se denominan alternativas. Las alternativas de proyecto estarán dadas por inversiones más significativas que las involucradas en la optimización de la situación base y tratarán de dar una solución integral al o los problemas detectados.

Todo proyecto tiene efectos en cuatro aspectos principales: fluidez del tráfico, seguridad vial, accesibilidad al transporte y a la propiedad adyacente y calidad ambiental del área circundante. Generar alternativas supone conocer objetivos específicos en cada aspecto, sea para modificarlo o para mantenerlo inalterado,
Identificación y definición de alternativas de solución

los que deberán ser explicitados con el mayor detalle posible. Las orientaciones provistas en los requerimientos del estudio, la información recolectada y su análisis en el diagnóstico, junto a las opiniones e inquietudes de los usuarios y organismos locales involucrados, conforman los antecedentes en que ha de basarse esta actividad.

4.2.1 El árbol de objetivos

Un instrumento sencillo y útil para la visualización de alternativas de solución a un problema es el árbol de objetivos, o árbol de medios - fines. Así como el árbol del problema (sección 2.2.3, pág. 15) era una secuencia encadenada de abajo-arriba de causas-efectos, el árbol de objetivos será el flujo interdependiente de medios-fines.

Para su construcción, basta "invertir" cada una de las causas y efectos detallados en el árbol del problema. Así, si el problema era carencia, la solución será suficiencia. Es como si dijéramos que el Arbol del Problema es el "negativo" de la película y su manifestación en contrario el "positivo" o revelado, es decir, el "Arbol de Objetivos" (ver Ejemplo 11).

Una vez verificada la lógica y la pertinencia del árbol de objetivos, se dispone de referencias adecuadas para la búsqueda y planteamiento de alternativas para resolver el problema. Los "medios fundamentales" son los del nivel inferior: constituyen las "raíces" del árbol y en torno ellos se deberán procurar las alternativas.

7 Este punto es una adaptación de una sección de SANIN [1992].

8 Recuerde que estos "medios fundamentales" corresponden a las causas básicas en el árbol del problema. Así, al buscar acciones que concreten los medios fundamentales, estaríamos solucionando la o las causas principales (básicas) del problema.
Ejemplo 11: Árbol de objetivos

![Diagrama de árbol de objetivos](image)

Para cada base del árbol de objetivos (medios fundamentales) se debe buscar creativamente una acción que lo concrete efectivamente en la práctica. Se busca contestar la pregunta: ¿Cuáles son las estrategias o acciones que posibilitan los medios inferiores del árbol de objetivos? (ver Ejemplo 12).

Enseguida, cada acción propuesta debe examinarse en los siguientes aspectos:

1) Estimar su nivel de incidencia en la solución del problema. Dar prioridad a las de mayor porcentaje de incidencia presumible.
Ejemplo 12: Formulación de acciones

Infraestructura vial adecuada entre sector norte y centro de Antofagasta

- **Suficientes vías de conexión norte-centro**
- **Menor aumento de los viajes norte-centro**
- **Eficiente uso de las vías existentes**

 - **Adecuada servidumbre ferrocarril**
 - **Existencia de vías alternativas**
 - **Suficientes servicios en sector norte**
 - **Adecuada señalización**
 - **Buena asignación de sentidos de tráfico**

 - **Expansión urbana planificada en sector norte**
 - **Modificación de la servidumbre del ferrocarril**
 - **Construcción circunvalar pie de monte**
 - **Actualización plan regulador sector norte**
 - **Reestudio y actualización de la señalización**
 - **Reasignación de sentidos de tráfico**

ii) Verificar en forma preliminar la factibilidad (física, técnica, presupuestaria, institucional, cultural) de las acciones propuestas.

iii) Verificar el grado de interdependencia entre las acciones propuestas y agrupar las que sean complementarias. Cada agrupación de acciones complementarias podrá configurar una alternativa.

Si en la verificación de incidencia encontramos que dos estrategias propuestas como alternativas no son excluyentes, entonces es bien probable que ambas se refuerzen para el cumplimiento del resultado esperado. Por lo tanto, deberían considerarse como componentes complementarios de la alternativa planteada.
Debe tenerse presente que el proceso de análisis es iterativo o retroalimentado: nunca se cierran las puertas, siempre debe ser posible incorporar nuevas alternativas o integrar varias que todavía se consideren como componentes complementarias de la solución.

Ejemplo 13: Formulación de alternativas

Para el caso del ejemplo anterior pueden conformarse dos alternativas:

ALTERNATIVA A: Formada por una serie de medidas de gestión; tales como: modificar las servidumbres ferroviarias otorgar facilidades especiales al transporte público. Ejemplo: señalar y semaforizar cuando corresponda.

ALTERNATIVA B: Abrir nuevas calles que permitan descongestionar otras vías alternativas.

4.2.2 Definición de alternativas de solución

Normalmente habrá varios elementos físicos comprometidos por el diseño para los que cabe idear tratamientos distintos. No por ello la más mínima modificación constituirá una alternativa. Conviene diferenciar acciones primarias y complementarias. Sólo las primeras podrán dar origen a alternativas diferenciadas.

- **Acciones primarias**

Son las que constituyen la esencia del proyecto, por cuanto determinan el carácter y la magnitud de las obras a emprender. Por ejemplo, solución a nivel o a desnivel en un nudo, ensanchar a tres o a cuatro pistas una vía, abrir una nueva conexión de doble sentido de tránsito o dos de sentido único. O, si se trata de proyectos de gestión, hacer un cambio de sentido de tránsito o imponer sentido reversible, establecer prioridad para ciertos usuarios en unas u otras vías u horas.

- **Acciones complementarias**

Son aquellas destinadas al tratamiento de conflictos locales o a corregir el efecto de alguna acción primaria para preservar un objetivo. Por ejemplo, habilitar una pista o fase especial para un cierto viraje, relocalizar lugares de estacionamiento, crear facilidades para el cruce de peatones en una intersección.
Si bien hay varias maneras de concretar acciones semejantes no constituyen alternativas, tal como éstas han sido definidas.

Por tanto, las acciones complementarias, como su nombre lo indica, constituyen acciones que complementan las alternativas de proyecto definidas, pues constituyen decisiones que hay que adoptar al interior de cada alternativa como problema de diseño operacional.

A modo de ejemplo, se menciona a continuación el tipo de proyectos de infraestructura que, combinando tanto las acciones primarias como las secundarias, pueden dar origen a alternativas de proyecto, dependiendo del problema en estudio:

- Ensanche de calzada o aumento del número de pistas
- Pavimentación de una vía
- Nivelación o desnivelación de una intersección
- Habilitar una nueva conexión

El estudio conjunto de los antecedentes mencionados permitirá identificar formas alternativas de alcanzar los objetivos planteados. Aunque ellas puedan ser muy distintas de un proyecto a otro es necesario, en primer lugar, que su concepción esté sujeta a estándares generales derivados de la jerarquía que ocupa en la red cada vía. A continuación, se indican unas recomendaciones adicionales según el tipo de proyecto:

- **Proyectos de gestión**

Estos no atraviesan por una selección de alternativas ya que ellas son escasas. Lo fundamental en este caso es, apoyándose en el diagnóstico, concebir acciones que efectivamente provocarán los cambios deseados en los parámetros operacionales. Muchas veces, medidas exitosas en un contexto no lo son en otros para un mismo problema (por ejemplo la instalación de una señal "ceda el paso" puede ser apropiado sólo en algunos tipos de intersecciones). Justificar detalladamente las medidas propuestas es, entonces, esencial en estos proyectos.
De aquí resultará un número variable de alternativas, que deberá guardar cierta proporción con la magnitud del proyecto en cuanto a costos de inversión e impactos. Se recomienda realizar un análisis basado en indicadores muy simples en orden a detectar si alguna de las alternativas planteadas es dominada por otra, presenta debilidades serias o no es posible implementarla de acuerdo a las condiciones (legales, administrativas, económicas, etc.) existentes actualmente. Tales alternativas pueden ser descartadas de inmediato. Las restantes serán sometidas a una elaboración mayor para pasar a un proceso de selección en que se determina cuáles seguirán a la fase de prefactibilidad y finalmente de factibilidad.

- **Proyectos de infraestructura**

Debe tenerse presente la flexibilidad de cada solución para admitir mejoras físicas u operacionales significativas en el futuro para enfrentar demandas mayores de ocurrencia incierta en el periodo de evaluación y, por tanto, no incorporables en los flujos de diseño. Es, sobre todo, el caso de proyectos en áreas con usos del suelo no consolidados o en proceso de transformación. Es decir si, por ejemplo, se está considerando la construcción de una nueva vía, será necesario reservar la faja de tierra necesaria para una eventual construcción de segundas calzadas en el futuro.

4.3 Descripción de las alternativas

Una vez identificadas las alternativas, se deberán describir todas las que permitan solucionar total o parcialmente el déficit cuantificado anteriormente.

Es importante considerar que el problema planteado en términos generales, en muchos casos puede separarse en problemas específicos, que pueden o no tener soluciones independientes. En este sentido, será necesario definir alternativas que tiendan a solucionar cada uno de los problemas específicos y trabajarlos además en forma separada con sus respectivos costos, beneficios, indicadores, etc. (por ejemplo: congestión y carpeta de rodado deteriorada; son problemas identificados en una misma área de estudio, pero que requieren soluciones distintas y por lo tanto tienen sus propios costos y beneficios).
Para cada una de las alternativas identificadas, se deberá describir en términos generales los siguientes aspectos:

- Cómo y en qué medida resuelve el problema
- Número y características de los usuarios (viajeros) beneficiados
- Estimación de costos y beneficios preliminares asociados a la alternativa
- Método para la ejecución de la alternativa
- Modo de operación
- Aspectos institucionales a considerar
- Aspectos legales que involucra la alternativa
- Cronograma para la implementación y logro de los objetivos
- Aceptación de la solución por la comunidad
- Financiamiento disponible para la ejecución y operación
- Restricciones visualizadas para la implementación y/o la operación
- Impacto ambiental (contaminación del aire o del agua, ruido, impacto paisajismo, etc.)
5 Evaluación de las alternativas de proyecto

El objetivo de este capítulo es presentar la metodología a seguir para la evaluación de las alternativas de proyecto. Se describen criterios para la identificación y cuantificación de los beneficios y costos involucrados en cada alternativa, así como para la selección de la mejor alternativa.

La evaluación económica de un proyecto se realiza, comparando durante la vida útil económica definida para el estudio (horizonte de evaluación) de cada alternativa de proyecto con la situación base optimizada, donde cada alternativa se denomina "Situación con proyecto" y la situación base optimizada "Situación sin proyecto".

Al ser esta evaluación de tipo social, la comparación se efectúa considerando el valor social de los recursos consumidos (precios sociales), que en vialidad urbana son tiempo, combustible y otros consumos de operación, como lubricantes, neumáticos, repuestos, etc.

Generalmente, los precios sociales requeridos para evaluar socialmente los proyectos de los distintos sectores son calculados por algún organismo de planificación del Estado.

5.1 Identificación y cuantificación de los beneficios de cada alternativa.

A partir de la demanda, actual y proyectada, es posible realizar una estimación de los beneficios asociados, los que deben recoger el impacto causado por las alternativas y cuantificarse en términos económicos. No obstante existen otros impactos que son de difícil valoración económica; tales como accidentes, ruido, contaminación del aire, efectos estéticos, etc. Estos impactos se deben identificar, y cuando sea posible, cuantificar, pues esto también ayuda en la decisión de qué alternativa escoger.

En la actualidad, los proyectos de vialidad urbana se evalúan social y económicamente cuantificando al menos los beneficios provenientes del ahorro de recursos involucrados en el desplazamiento de vehículos. Estos son: tiempo de usuarios (viajeros), combustible y otros consumos de operación de los vehículos.
5.1.1 Ahorros en tiempo de viaje

Todo proyecto de vialidad urbana debería significar un menor tiempo de viaje respecto a la situación actual. Los beneficios por este concepto se calculan haciendo la diferencia entre el tiempo empleado por los usuarios de la vía en la situación sin proyecto y el tiempo empleado por los usuarios en la situación con proyecto.

En caso que la ejecución del proyecto genere nuevos usuarios, que provengan de otras rutas, el beneficio por ahorro de tiempo también estará dado por la diferencia de tiempo empleado en las situaciones sin y con proyecto, donde la situación sin proyecto corresponde a la ruta empleada anteriormente por esos usuarios.

Para cuantificar económicamente el ahorro de tiempo originado con la ejecución de las distintas alternativas de proyecto, se multiplica dichos valores por el precio social del tiempo.

El precio o valor social del tiempo, al igual que los otros precios sociales son normalmente calculados por un organismo de gobierno. A modo de ejemplo, en Anexo N° 2 se adjunta la metodología de cálculo del valor social del tiempo que se utiliza en Chile, donde actualmente dicho valor equivale a aproximadamente US$ 1/hora, aplicándose para todas las regiones del país.

La fórmula matemática para cuantificar los beneficios por ahorros de tiempo de viaje para cada alternativa de proyecto, es:

Fórmula 3: Cuantificar los beneficios por ahorros de tiempo de viaje

\[
BAT = \sum (T_{ui}^{sp} - T_{ui}^{cp}) \cdot q_{ij} \cdot T0ij \cdot FE_j \cdot VST
\]

donde:

- BAT: Beneficios por ahorro de tiempo de viaje
- \(T_{ui}^{sp}\): Tiempo medio de viaje en la situación sin proyecto del vehículo tipo i en el período j (hrs)
- \(T_{ui}^{cp}\): Tiempo medio de viaje en la situación con proyecto del vehículo tipo i en el período j (hrs)
Flujo de vehículos tipo i en el período j (veh/hr)
Tasa de ocupación del vehículo tipo i en el período j (pax/veh)
Factor de expansión anual del período j (hrs/año)
Valor social del tiempo ($/hr)

El factor de expansión anual del período j, se utiliza pues los beneficios se calculan en términos anuales para cada año del horizonte del proyecto. Está dado por:

Fórmula 4:

\[FE = NS \times NH_j \]

desde:

\(NS = \) Número de semanas al año de la semana tipo correspondiente. En proyectos en que no existe estacionalidad de la demanda, el número de semanas al año es 52.

\(NH_j = \) Número de horas de la semana tipo que comprende el período j

Cabe mencionar que las categorías de vehículos son particulares de cada tipo de proyecto, siendo las más usuales las descritas en la tabla II.

5.1.2 Ahorros en costos de operación

Los costos de operación de los vehículos se dividen en dos grupos:
- Costos de consumo de combustible
- Costos de otros consumos de operación. En estos se incluyen los costos por: lubricantes, repuestos, mano de obra por mantención, neumáticos y depreciación.

Los ahorros en costos de operación debido a la ejecución del proyecto se obtienen al efectuar la diferencia entre los costos de operación de las situaciones sin y con proyecto. Así, es fundamental, para calcular los
consumos de combustible de las situaciones sin y con proyecto, conocer las velocidades promedio de operación en ambas situaciones. A continuación, se explica la metodología de estimación de dichas velocidades.

a) **Velocidad promedio de operación en situación sin proyecto**

La estimación de la velocidad promedio de operación en la situación base está dada por la expresión matemática:

Fórmula 5: Velocidad promedio de operación en situación sin proyecto

\[
V_{ij}^{\text{ propri}} = \frac{L}{T_{ij}^{\text{ propri}}}
\]

desde:

- \(L\) : Longitud del tramo de vía en estudio (km)
- \(V_{ij}^{\text{ propri}}\) : Velocidad de operación del vehículo tipo \(i\) en el período \(j\), en situación sin proyecto (km/hr).
- \(T_{ij}^{\text{ propri}}\) : Tiempo medio de viaje en la situación sin proyecto del vehículo tipo \(i\) en el período \(j\) (hrs).

Los tiempos medios de viaje por categoría de vehículo se calculan mediante alguno de los métodos explicados en 3.4 y la longitud del tramo en estudio es un dato conocido.

b) **Velocidad promedio de operación en situación con proyecto**

Como no es posible conocer los tiempos de viaje o las velocidades de operación en la situación con proyecto; se recomienda que en estudios a nivel de perfil, la velocidad de operación de la vía en situación con proyecto se estime calculando la velocidad de operación de una vía de similares características, mediante el método explicado en la letra a y luego, asuma esa velocidad como propia de la situación con proyecto.
c) **Costos de Consumo de Combustible**

El consumo de combustible tiene tres componentes: por detenciones, al ralentí y en movimiento. Para estimar dichos valores se sugiere usar la metodología propuesta por Bowyer, Akcelik y Biggs (1985). Usando dicha metodología, en el caso chileno se obtuvieron los valores que se detallan en las tablas VI a VIII, los cuales pueden servir de referencia para otros países.

- **Consumo de combustible por detenciones**

Para estimar este consumo, tanto en la situación sin como en la con proyecto, se debe entrar a la tabla VI con la velocidad media con la cual los vehículos se detienen en ambas situaciones. La diferencia entre esos valores dará el ahorro de consumo de combustible por detención.

Tabla VI: Consumo de combustible por detenciones

<table>
<thead>
<tr>
<th>Velocidad de Crucero (Km/hr)</th>
<th>Vehículos livianos (ml/dt)</th>
<th>Buses (ml/dt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,42</td>
<td>3,20</td>
</tr>
<tr>
<td>20</td>
<td>3,11</td>
<td>7,99</td>
</tr>
<tr>
<td>30</td>
<td>5,67</td>
<td>16,93</td>
</tr>
<tr>
<td>40</td>
<td>8,87</td>
<td>29,24</td>
</tr>
<tr>
<td>50</td>
<td>12,52</td>
<td>44,59</td>
</tr>
<tr>
<td>60</td>
<td>16,38</td>
<td>62,45</td>
</tr>
<tr>
<td>70</td>
<td>20,09</td>
<td>82,07</td>
</tr>
<tr>
<td>80</td>
<td>23,26</td>
<td>102,42</td>
</tr>
<tr>
<td>90</td>
<td>25,22</td>
<td>121,67</td>
</tr>
<tr>
<td>100</td>
<td>26,82</td>
<td>135,95</td>
</tr>
</tbody>
</table>

Fuente: SECTU, 1988
Ejemplo 14: Consumo de combustible por detenciones

Se requiere calcular el consumo de combustible anual por detención, del flujo de vehículos livianos de 2.500 veh/hr en período punta, que tiene una velocidad de operación promedio de 40 Km/hr y, se detiene cuatro veces en promedio a lo largo del viaje.

Cálculo del consumo de combustible por detención:

De la tabla VI se extrae que el consumo es de 8,87 ml/detención, por lo tanto en el viaje total el consumo de combustible por detención es de: 8,87 * 4 = 35,48 ml/veh.

Para un flujo de 2.500 veh/hr, el consumo es: 35,48 (ml/veh) * 2.500 (veh/hr) = 88.700 ml/hr.

Suponiendo que existen 5 hrs en el período punta, el consumo de combustible semanal del flujo vehicular es: 88.700 * 5 (hrs) * 5 (días) = 2.217.500 ml = 2.217,5 litros

- Consumo de combustible en ralentí

Este consumo se refiere al combustible que gasta el vehículo cuando está detenido, pero con el motor en marcha, es decir, frente a una luz roja. Por tanto, este consumo sólo corresponde estimarlo en ejes semaforizados. Para estimar este consumo, se debe determinar el tiempo medio que los vehículos se detienen durante el viaje por el área en estudio, para ambas situaciones. Luego, se ingresa a la tabla Tabla VII, la que entrega el consumo expresado en lt/hr. Posteriormente, se efectúa las diferencias de consumos de combustible entre las situaciones sin y con proyecto.

Tabla VII: Consumo de combustible en ralentí (lts/hr)

<table>
<thead>
<tr>
<th>Vehículos livianos</th>
<th>Buses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.08</td>
<td>2.22</td>
</tr>
</tbody>
</table>

Fuente: SECTU, 1988
- Consumo de combustible en movimiento

Con la información de velocidad media de circulación en el área de estudio, se ingresa a la tabla Tabla VIII y se determina el consumo de combustible en movimiento, para las situaciones sin y con proyecto. La información se entrega en ml/km, por lo que además se debe conocer la distancia media recorrida por los vehículos (livianos y buses), la que se multiplica por el consumo unitario, obteniéndose el consumo de combustible total en movimiento.

Ejemplo 15: Consumo de combustible en movimiento

Continuando con el mismo ejemplo, se requiere calcular el consumo de combustible anual en movimiento, para el flujo vehicular liviano. La distancia de viaje en la zona en estudio son 300 kilómetros.

Cálculo del consumo de combustible en movimiento:

Con la información de velocidad media se ingresa a la Tabla VIII. Se observa que a 40 km/hr, el consumo de combustible en movimiento es 74,9 ml/km.

Para la zona en estudio, el consumo por vehículo es: 74,9 * 3 = 224,7 (ml/veh).

Para un flujo de 2,500 veh/hr, el consumo es: 224,7 (ml/veh) * 2,500 (veh/hr) = 569,75 lt/hr.

Para un período punta de 5 hrs, el consumo de combustible semanal del flujo vehicular es: 569,75 * 5 (hrs) * 5 (días) = 14,043,75 litros

Luego, el consumo de combustible en movimiento anual es: 14,043,75 * 52 = 730,275 litros.

La diferencia entre los consumos de las situaciones sin y con proyecto corresponde al ahorro de consumo de combustible de los vehículos en movimiento.

- Consumo total de combustible

El ahorro total de consumo de combustible se obtiene sumando todos los ahorros por consumo de combustible obtenidos. La valorización económica de él se hace multiplicándolo por el precio social del combustible. A modo de referencia, se indican a continuación los valores utilizados en Chile, de acuerdo a las recomendaciones del Ministerio de Planificación y Cooperación (MIDEPLAN).
Tabla VIII: Consumo de combustible en movimiento

<table>
<thead>
<tr>
<th>Velocidad de Crucero (Km/hr)</th>
<th>Vehículos livianos (ml/km)</th>
<th>Buses (ml/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>160,0</td>
<td>443,7</td>
</tr>
<tr>
<td>20</td>
<td>105,3</td>
<td>326,8</td>
</tr>
<tr>
<td>30</td>
<td>83,7</td>
<td>268,1</td>
</tr>
<tr>
<td>40</td>
<td>74,9</td>
<td>242,6</td>
</tr>
<tr>
<td>50</td>
<td>72,8</td>
<td>231,9</td>
</tr>
<tr>
<td>60</td>
<td>72,8</td>
<td>229,8</td>
</tr>
<tr>
<td>70</td>
<td>76,0</td>
<td>233,8</td>
</tr>
<tr>
<td>80</td>
<td>81,3</td>
<td>242,2</td>
</tr>
<tr>
<td>90</td>
<td>88,2</td>
<td>255,3</td>
</tr>
<tr>
<td>100</td>
<td>97,9</td>
<td>274,4</td>
</tr>
</tbody>
</table>

Fuente: SECTU, 1988

Tabla IX: Precio social de combustible

<table>
<thead>
<tr>
<th>Tipo de Combustible</th>
<th>Precio Social (US$/lt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 Octanos</td>
<td>0,2825</td>
</tr>
<tr>
<td>Diesel</td>
<td>0,2325</td>
</tr>
</tbody>
</table>
- Costos de otros consumos de operación

Como ya se señaló, estos costos corresponden a los consumos de: lubricantes, repuestos, mano de obra, neumáticos y depreciación.

Para el cálculo de dichos costos, se recomienda el uso de las obtenidas de la "Metodología de Repavimentación" del estudio "Mantenimiento Vial Urbano" (Sergio González y Mauricio Orrego), el cual se basó en la metodología del modelo HDM III, adaptado a condiciones urbanas. Las fórmulas fueron actualizadas por la Secretaría Ejecutiva de la Comisión de Planificación de Inversiones en Infraestructura de Transportes de Chile (SECTRA).

Las relaciones corresponden a funciones de costos de operación de vehículos, las que dependen del estado de la carpeta de rodado, el cual se mide a través de la rugosidad del pavimento, que está representada por el índice BI.

Fórmula 6: Buses urbanos

\[
CTB = 37,60 + 0,0039 \times BI \ ($/km) \\
CTB = 0,094 + 0,975 \times 10^{-5} \ (US$/km)
\]

Fórmula 7: Taxibuses

\[
CTT = 35,51 + 0,0034 \times BI \ ($/km) \\
CTT = 0,089 + 0,85 \times 10^{-5} \ (US$/km)
\]

Fórmula 8: Taxis y taxis colectivos

\[
CTTA = 9,93 + 0,0020 \times BI \ ($/Km) \\
CTTA = 0,025 + 0,5 \times 10^{-5} \ (US$/km)
\]
Fórmula 9: Automóvil privado

\[
CTA = 21,81 + 0,0029 \times BI (\$/km) \\
CTA = 0,0545 + 0,725 \times 10^{-5} \times BI (\text{US$}/km)
\]

Fórmula 10: Camiones

\[
CTC = 37,60 + 0,0039 \times BI (\$/km) \\
CTC = 0,094 + 0,975 \times 10^{-5} \times BI (\text{US$}/km)
\]

donde, BI: Rugosidad de la carpeta de rodado en (mm/km).

Para obtener los ahorros por costos de las otros consumos de operación se debe ingresar en las fórmulas anteriores los valores de la rugosidad. Como éstas serán distintas para las situaciones sin y con proyecto, la diferencia de ambos valores entrega el ahorro de otros costos de operación derivado de la ejecución del proyecto.

El cálculo de este costo tiene sentido cuando hay mejora en la carpeta de rodado y/o si el proyecto origina un cambio de distancia recorrida respecto a la situación sin proyecto.

En anexo N° 3 se indican valores de rugosidades típicos para caminos según distintos estados del pavimento.
Ejemplo 16: Otros consumos de operación

Siguiendo con el ejemplo anterior, se requiere calcular el consumo de otros costos de operación del flujo de vehículos livianos del período punta, para la situación base y la con proyecto, sabiendo que actualmente el eje en estudio tiene un pavimento en malas condiciones, y que en la situación con proyecto, se repavimentará totalmente. Se sabe que un 30% de los vehículos livianos son taxis.

En la situación base, el pavimento está en malas condiciones. Se tiene antecedentes que el BI es de 4.000 mm/km. En la situación con proyecto, la carpeta se repavimentará, quedando con un BI de 2.000 mm/km. A continuación se calcula el consumo de otros costos de operación para las situaciones sin y con proyecto:

Corresponde aplicar las siguientes fórmulas:

Automóvil Privado:

\[
CTA = 21.81 + 0.0029 \times BI (\$/km) \]

Taxis y Taxis Colectivos:

\[
CTA = 9.93 + 0.0020 \times BI (\$/km)
\]

De un flujo de 2.500 veh/hr, se sabe que el 30% son taxis, es decir, 750 vehículos. Por los tanto, 1.750 son vehículos particulares. Aplicando las fórmulas anteriores, se tiene:

SITUACIÓN SIN PROYECTO

Automóvil Privado:

- \(CTA \text{ veh} = 21.81 + 0.0029 \times 4000 = 33.41 \text{ (}\$/km\text{)} \) por vehículo

 Para una distancia de 3 km y 1.750 veh/hr, los otros costos de operación por hora son:

- \(CTA \text{ hora} = 33.41 + 3 \times 1750 = 175.402.5 \text{ ($/h) } \)

 El consumo anual de los vehículos particulares en período punta es:

- \(CTA \text{ anual} = 175.402.5 \times 5 \text{ (hrs)} \times 5 \text{ (días)} \times 52 \text{ (sem.)} = $ 228,023.250 \)

Taxis y Taxis Colectivos:

- \(CTA \text{ veh} = 9.93 + 0.0020 \times 4000 = 17.93 \text{ ($/km) } \)

 Para una distancia de 3 km y 750 veh/hr, los otros costos de operación son:

- \(CTA \text{ hora} = 17.93 + 3 \times 750 = 40.342.5 \text{ ($/h) } \)

 El consumo anual de los taxis en período punta es:

- \(CTA \text{ anual} = 40.342.5 \times 5 \text{ (hrs)} \times 5 \text{ (días)} \times 52 \text{ (sem.)} = $ 52,445.250 \)

SITUACIÓN CON PROYECTO

Automóvil Privado:

- \(CTA = 21.81 + 0.0029 \times 2000 = 27.61 \text{ ($/km) } \)

 Para una distancia de 3 km y 1.750 veh/hr, los otros costos de operación son:

- \(CTA = 27.61 + 3 \times 1750 = 144.952.5 \text{ ($/h) } \)

 El consumo anual de los vehículos particulares en período punta es:

- \(CTA = 144.952.5 \times 5 \text{ (hrs)} \times 5 \text{ (días)} \times 52 \text{ (sem.)} = $ 188,438.250 \)

Taxis y Taxis Colectivos:

- \(CTA = 9.93 + 0.0020 \times 2000 = 13.93 \text{ ($/km) } \)

 Para una distancia de 3 km y 750 veh/hr, los otros costos de operación son:

- \(CTA = 13.93 + 3 \times 750 = 31.342.5 \text{ ($/h) } \)

 El consumo anual de los taxis, en período punta es:

- \(CTA = 31.342.5 \times 5 \text{ (hrs)} \times 5 \text{ (días)} \times 52 \text{ (sem.)} = $ 40,745.250 \)

Por lo tanto, el ahorro de otros consumos de operación anuales son:

\[
\text{Automóviles Particulares} = $ 228,023.250 - $ 188,438.250 = $ 39,585.000
\]

\[
\text{Taxis} = $ 52,445.250 - $ 40,745.250 = $ 11,700.000
\]

\[
\text{Ahorro total anual por otros costos de operación} = $ 51,285.000
\]
5.2 Identificación y cuantificación de los costos de cada alternativa

Los Costos de cada alternativa corresponden a los Costos de Inversión y Mantención de cada una. Ambos tipos de costos deben calcularse privadamente y luego mediante la aplicación de factores de corrección social, se estiman socialmente, los cuales se utilizan en la Evaluación Social de cada alternativa de proyecto.

5.2.1 Costos de inversión

a) Inversión privada

La evaluación económica de una alternativa corresponde esencialmente a una comparación de los beneficios económicos que ella produce durante su vida útil con los costos de inversión necesarios para su puesta en funcionamiento. Al igual que los beneficios los costos de inversión de una alternativa, se estiman como el diferencial respecto al costo asociado a la situación base optimizada.

Los costos de inversión consideran fundamentalmente los costos asociados al suelo urbano, a la construcción de las obras, incluyendo los costos de los sistemas de operación y control de tránsito, así como los del proyecto definitivo de ingeniería y de asesoría y supervisión a la construcción.

Dependiendo del nivel de estudio de preinversión que se está desarrollando, será el grado de precisión con que se estime la inversión de cada alternativa. Si el estudio es a nivel de perfil, la estimación del costo deberá hacerse con la información disponible, sin recurrir a estudios especiales, pueden hacerse en base a prediseños existentes.

Mientras si el estudio de preinversión es de Prefactibilidad, el costo de inversión de cada alternativa se determina en base a un anteproyecto de ingeniería el que se devide en anteproyecto físico y anteproyecto operacional. Posteriormente, para la o las alternativas seleccionadas en la Prefactibilidad, se estiman sus costos con mayor nivel de precisión en el estudio de Factibilidad, para lo cual se realiza el estudio de ingeniería de detalle.

En anexo Nº 4 se define cada uno de los ítem que se consideran en los Anteproyectos Físico y Operacional.
b) Inversión social

Se debe incluir en los costos de inversión social, todas aquellas partidas consideradas en la inversión privada más aquellas que, a pesar de haber sido financiadas previamente, tienen un uso alternativo y por lo tanto es posible determinarles un costo de oportunidad. Entre estas últimas se puede mencionar el valor de la tierra, aún cuando ya esté disponible para el proyecto por ser de propiedad pública.

La derivación de precios sociales, en la generalidad de los casos, se realiza a partir de los precios de mercado, eliminando las transferencias internas de la sociedad (aranceles, impuestos, utilidades supernormales o monopólicas cuando existan, etc.). De esta forma se debe intentar reflejar el grado de escasez del bien para la economía, descomponiendo los precios de mercado de cada partida en sus recursos básicos y aplicando los factores sociales correspondientes.

En la práctica, la transformación de precios de mercado a precios sociales se hace a través de factores de conversión entregados por un organismo central del estado. Los factores son para el precio social de la mano de obra en sus diferentes niveles (no calificada, semi-calificada y calificada), la divisa, el combustible y el tiempo⁹.

Todos los costos en que se haya incurrido, previo a la toma de decisiones de inversión, cuyas partidas no correspondan a bienes transables con un costo de oportunidad social positivo, no deben considerarse en el costo de inversión de la alternativa en estudio. Por ejemplo, el costo de ingeniería de prediseño y el costo de obras civiles construidas que no tengan uso alternativo.

5.2.2 Costos de mantención

Corresponde estimar tanto para la situación base como para las alternativas de proyecto los costos de mantención de ellas, durante cada año del horizonte de evaluación.

En la evaluación, el diferencial de los costos de mantención de la situación base respecto de los de cada alternativa, es el ahorro o costo de mantención que genera el proyecto.

⁹ Como dato práctico, se puede mencionar que de acuerdo a la experiencia chilena, el valor social de la inversión corresponde aproximadamente a un 85% del valor privado. Este valor puede utilizarse en estudios a nivel de perfil.
En algunos casos, el proyecto genera un costo "extra" de mantención respecto del incurrido en la situación base, por lo que resulta un costo y no un beneficio del proyecto. Esto normalmente ocurre pues la situación base no es provista de una mantención periódica constante.

La mantención de la vía se podría dividir en rutinaria y periódica. La primera, se realiza normalmente cada un año y la periódica, se realiza cada 2 ó 3 años. Entre los ítemes de mantención rutinaria se pueden mencionar: limpieza de cunetas, repintada de las líneas que dividen las pistas, etc. La mantención periódica considera, entre otros ítemes tales como: imprimación asfáltica en ciertos sectores y mantención de señales.

5.2.3 Costos por congestión durante la construcción
Será importante considerar también los costos de congestión durante la construcción cuando existan diferencias apreciables entre las alternativas que se comparan. Por ejemplo, cuando se compara un aumento de capacidad en una ruta existente con alto nivel de tráfico, versus una ruta alternativa nueva. En el caso de estimarse necesaria su incorporación, el costo resultante deberá ser agregado al de inversión en el período en que se produzca. Resultará así más evidente la necesidad de compatibilizar adecuadamente las etapas constructivas con el manejo del tránsito durante cada una de ellas.

5.3 Criterios para la selección de alternativas
5.3.1 Evaluación
Una vez determinados los costos y beneficios asociados a las diferentes alternativas de proyecto, es necesario determinar los indicadores de rentabilidad para cada una de ellas.

Dichos indicadores son, para el corto plazo, el valor actualizado neto del primer año (VAN1) y la tasa de rentabilidad inmediata (TRI). En el largo plazo son, el valor actualizado neto (VAN) y la tasa interna de retorno (TIR).

a) Indicadores de corto plazo:
 i) Tasa de rentabilidad inmediata, o tasa de retorno del primer año (TRI): Corresponde al valor de la tasa de actualización (i) que hace cero el valor actualizado neto del primer año (VAN1). En términos matemáticos puede expresarse así:
Fórmula 11: Tasa de rentabilidad inmediata o tasa de retorno del primer año

\[TRI = \frac{B_1}{I_0} \]

donde:
- \(B_1 \) = beneficios del primer año.
- \(I_0 \) = inversión actualizada al año anterior al primero de funcionamiento.

Si la TRI es mayor que la tasa de actualización social (i) vigente, el proyecto se considera rentable, en caso contrario debería ser rechazado.

ii) Valor actualizado neto del primer año (VAN1): Corresponde al costo de postergar un año el proyecto. Se define como

Fórmula 12: Valor actualizado neto del primer año

\[VAN1 = \frac{B_1 - I_o \times r}{1 + r} \]

- \(B_1 \) = Beneficio del primer año
- \(I_o \) = Inversión social del proyecto actualizada al año 0
- \(r \) = Tasa de descuento social

Los indicadores de corto plazo son adecuados de usar cuando los beneficios son crecientes y cuando el incremento relativo de los beneficios entre alternativas se mantiene aproximadamente constante.

b) Indicadores de rentabilidad de largo plazo:

i) VAN: Es el valor actualizado de los costos y beneficios del proyecto, con una cierta tasa de descuento "r".
Fórmula 13: Valor actualizado neto VAN

\[VAN = -I + \sum_{i=0}^{i=n} \frac{B_n}{(1+r)^i} \]

donde:

I = Inversión social del proyecto, es decir inversión privada, con correcciones de los ítemes de mano de obra y divisa de acuerdo a los valores sociales definidos.

\(B_n \) = Beneficios generados por el proyecto en el año \(n \)

i = Tasa de descuento social, valor que debe ser definido por la oficina de planificación nacional (u organismo equivalente) de cada país y que equivale al costo alternativo del dinero destinado al proyecto.

ii) TIR (Tasa Interna de Retorno): Corresponde a la tasa de descuento (\(r \)) que hace cero el VAN. Dicho valor debe calcularse por medio de iteraciones, hasta converger al valor 0. No obstante, actualmente las calculadoras financieras y las planillas de cálculo tales como Lotus o Excel permiten calcular fácilmente la TIR de un proyecto, mediante el ingreso de los parámetros relevantes.

Si la TIR resulta superior a la tasa social de descuento (\(r \)), entonces el proyecto es rentable, en caso contrario no lo es.

c) Momento óptimo de inversión

Es conveniente que la evaluación incluya el cálculo del año óptimo en que se debería realizar el proyecto. Para ello se utiliza el VAN1.

La definición de VAN1 corresponde a la diferencia entre el VAN que se obtiene al realizar la inversión en el año 0 y el VAN obtenido al realizar la inversión en el año 1. Si dicho valor es positivo significará que conviene realizar el proyecto el año 0, pues el VAN obtenido para ese año es mayor el que resultaría si la inversión se hace el año 1.
De la fórmula para calcular el VAN1, se obtiene que conviene realizar la inversión el año 0, si:

\[B_1 > I_0 \times i \]

Ejemplo 17: Momento óptimo de inversión

Determinar se el momento óptimo de inversión de un proyecto corresponde al año 0, sabiendo que tiene una inversión de $450 millones y el beneficio del primer año es $58.000.000. La tasa social de descuento es 12%.

Estimación del momento óptimo de inversión:

Primero se calcula \(I_0 \times r = 450.000.000 \times 0.12 = 54.000.000 \)

Como la relación \(I_0 \times r \) es menor que el beneficio del primer año, entonces se puede concluir que el año 0 corresponde al año óptimo de inversión.

5.3.2 Selección de alternativas

Una vez determinados los indicadores de largo o corto plazo, según corresponda, deberán seleccionarse aquellas alternativas que posean un VAN o VAN1 mayores, y/o una TIR o TRI mayores y superiores a la tasa de descuento social definida.

5.4 Análisis de sensibilidad

A través de este análisis se intenta medir el nivel de sensibilidad en la estimación de los indicadores de rentabilidad frente al comportamiento de determinadas variables de relevancia. En la selección de una variable a sensibilizar, debe considerarse dos aspectos básicos:

- que tenga un impacto significativo en la estimación de los costos de inversión o los beneficios económicos.
- que presente un nivel de incertidumbre apreciable en su estimación.
Para estos efectos, se recomienda que en la evaluación se planteen tres escenarios posibles: tendencial, optimista y pesimista; donde las variables sujetas a variación adopten un valor de acuerdo al escenario que se está considerando.

Las variables que normalmente se estiman relevantes de sensibilizar en los distintos escenarios considerados, son: costo de inversión, costo de expropiaciones, beneficios por tiempo de viaje y tasa de crecimiento de los flujos vehiculares.
6 Presentación de la alternativa seleccionada

El objetivo de este capítulo es presentar, en forma resumida, los elementos mínimos a incluir en el documento de perfil de un proyecto de vialidad urbana. Para ello, se detalla a continuación los capítulos que deberá tener el documento de perfil del proyecto y el contenido de cada uno de ellos.

Una vez que se ha analizado detalladamente cada una de las alternativas posibles para solucionar el problema detectado y se han evaluado, se obtendrá como resultado la selección de la alternativa de proyecto a ejecutar. La alternativa seleccionada puede traducirse en un proyecto relacionado con la infraestructura del sistema vial o en un proyecto relacionado con la gestión de la vialidad.

La alternativa de proyecto seleccionada debe ser presentada a las autoridades que deben aprobar su ejecución y/o proveer el financiamiento. Asimismo, en algunos casos puede ser conveniente presentar a la comunidad la alternativa seleccionada, señalando porque fue elegida y los beneficios y costos asociados a ella. Para estos efectos, es necesario preparar un documento de proyecto, cuya estructura se sugiere a continuación.

Pauta para la presentación del perfil del proyecto

I. Resumen y conclusiones
La presentación del proyecto debe comenzar con un buen resumen de los aspectos más relevantes identificados durante el estudio. Así el lector tendrá una visión general del problema analizado y de las soluciones planteadas para resolverlo.

Este resumen debe dar cuenta, en primer lugar, del problema que se pretende resolver, total o parcialmente, y del área de influencia en la cual se circunscribirá el proyecto. Es importante mencionar las principales características del problema y del área analizada; tanto de sus condiciones de operación como del número de usuarios.

En segundo lugar, se debe mencionar el resultado del diagnóstico de la situación actual (grado de congestión), haciendo especial referencia de los usuarios beneficiados por el proyecto.
Por último, es importante señalar el resultado de la evaluación del proyecto, que junto con mencionar las distintas alternativas analizadas, indique aquellos aspectos más relevantes que llevaron a seleccionar la alternativa de proyecto a implementar.

II. Diagnóstico de la situación actual

En este punto corresponde entregar el resumen de los principales aspectos analizados para llegar al diagnóstico de la situación actual. El resumen debe incluir todas aquellas variables relevantes que permitan visualizar claramente la necesidad o problema existente.

A. Area de influencia. Será necesario anexar el mapa de localización donde quede claramente identificada el área de influencia con sus principales características.

B. Demanda actual. En este punto hay que detallar la demanda que está requiriendo el sistema vial, siendo para ello necesario indicar:

i. Conteos de flujos, tanto vehiculares como peatonales, en los distintos períodos considerados.
ii. Matrices origen destino, si se cuenta con ellas
iii. Reportes de tasas de ocupación de vehículos particulares y de locomoción colectiva.
iv. Estadísticas de accidentes.

C. Proyección de la demanda. En este punto se debe especificar:
 - Tasas de crecimiento de los flujos.
 - Tasas de crecimiento de las tasas de ocupación.
 - Flujo proyectados

D. Oferta Actual. En esta sección hay que resumir los antecedentes relacionados con las características de la oferta del sistema vial en el área de influencia del proyecto. Esta caracterización se realiza indicando los distintos flujos de saturación de las vías que componen el área de análisis.
E. **Indicadores de congestión.** En caso que exista congestión en el área de estudio, corresponde presentar el grado de saturación que presentan las vías en estudio. Requiere especial detalle la inclusión de aquellas características operacionales de la vía que inciden en la capacidad.

III. **Identificación y definición de alternativas de solución**

En este punto se deberá resumir la optimización de la situación actual y cada una de las alternativas analizadas para dar solución al problema detectado.

A. **Optimización de la situación actual.** Cuando sea posible indicar las mejoras que se puedan lograr respecto a la situación actual, a través de medidas de gestión y mejoramientos geométricos menores (con inversiones mínimas).

B. **Descripción de cada una de las alternativas analizadas.** Preparar una breve descripción de cada una de las alternativas de proyecto analizadas, indicando las principales características físicas y/o operacionales de cada una de ellas.

IV. **Evaluación de la alternativa de proyecto**

Se deberá presentar en forma resumida los beneficios y costos asociados a cada una de las alternativas analizadas y los criterios y variables que incidieron en la selección de la alternativa de proyecto a ejecutar. Para ello se sugiere resumir los siguientes aspectos:

- Identificación y cuantificación de beneficios de cada alternativa.
- Identificación y cuantificación de costos de cada alternativa.
- Indicadores de rentabilidad de corto y largo plazo.
- Criterios utilizados y analizados para la selección de la alternativa de proyecto.
V. Alternativa seleccionada

Finalmente, el documento deberá dar cuenta en forma resumida de los ítem de beneficios y costos asociados a la ejecución y operación del proyecto. Es decir, se debe detallar la alternativa seleccionada, la que se traducirá en la situación con proyecto.

A. Beneficios

Este punto deberá resumir todos aquellos beneficios, tanto medibles como no medibles, identificados para la alternativa de proyecto seleccionada. Cuando los beneficios no puedan expresarse en términos económicos, igual deberán ser indicados y descritos en el documento.

B. Costos

En este punto se deberá detallar cada uno de los ítem de costo asociados a la alternativa seleccionada, con sus respectivas unidades de medida y costo de cada una de ellas. Deben incluirse, según corresponda, los siguientes ítem:

a) Costos de inversión.
 i. Trazado geométrico (Cubicaciones de movimiento de tierra).
 ii. Urbanismo y ambiente (incluye expropiaciones).
 iii. Pavimentos.
 iv. Reposición de servicios.
 v. Estructuras y obras de arte.

b) Costos de Operación.
 i. Mantención.
 ii. Otros.
VI. Anexos

Todo documento que respalde y/o justifique la situación presentada, es recomendable que se incluya como anexo del perfil del proyecto. Dentro de los documentos que se recomienda incluir, están los siguientes:

- Plano de localización construido en el desarrollo del estudio, donde se indique: el área de influencia, distancias, demarcaciones, diseño físico, etc.
- Diseños de ingeniería, cuando corresponda
- Presupuesto detallado del proyecto
- Certificados de la situación legal de los terrenos a ocupar con el proyecto.
- Certificado donde se acredite la factibilidad de financiar los costos de operación que genere el proyecto, con el respaldo de la autoridad competente.
- Compromisos de la comunidad en la ejecución y/u operación del proyecto.
- Plano de localización de los servicios básicos.
- Fotografías que grafiquen la situación presentada.
- Informes técnicos que avalen las propuestas técnicas planteadas.
BIBLIOGRAFÍA

MIDEPLAN (1992): "Inversión Pública, Eficiencia y Equidad"; Santiago, Chile.

MIDEPLAN (1996): "Guía para la elaboración, evaluación y presentación de proyectos de Vialidad Intermedia"; Santiago, Chile.

SANIN HECTOR (1992): "Guía Metodológica General para la Preparación y Evaluación de Proyectos de Inversión Social"; Santiago, Chile.

GLOSARIO

Automóvil directo: equivalente (ADE)
Corresponde a un vehículo equivalente que sigue directo en una intersección.

BI:
Medida de la rugosidad del pavimento (mm/km)

Bus:
Vehículo de locomoción colectiva con capacidad para aproximadamente 45 a 50 pasajeros sentados.

Capacidad de una vía:
Se define como el número máximo de vehículos que puede acoger cada pista, lo que se denomina flujo de saturación.

Flujos vehícuales:
Cantidad de vehículos que circulan por una vía o eje por unidad de tiempo.

Grado de congestión:
Es el cuociente entre el número de vehículos que hacen uso de la vía y el flujo de saturación de la misma.

IRI:
Indice de regularidad internacional. Es una unidad de medida de la rugosidad. Se expresa en m/km.

Mideplan:
Ministerio de Planificación y Cooperación; Santiago, Chile.

Mintratel:
Ministerio de Transporte y Telecomunicaciones; Santiago, Chile.

Perfilómetro:
Instrumento que permite medir la rugosidad de la carpeta de rodado de una calle.

Periodización:
Clasificación del total de horas del año en grupos horarios de características internamente homogéneas, tanto en composición vehicular, nivel y repartos de flujos, así como en el patrón de los viajes.
Ralentí: Se refiere al momento en que un vehículo está detenido, pero con el motor en marcha, es decir, frente a una luz roja.

Rugosidad: Se define como la variación de cota de una calle o un camino, a partir de una referencia de un pavimento totalmente liso, sobre el cual no se originan vibraciones en un vehículo.

Vehículo equivalente (veq): Corresponde a un automóvil particular (se utiliza para transformar los flujos una unidad homogénea).

Taxibus: Vehículo de locomoción colectiva con capacidad para aproximadamente 25 a 30 pasajeros sentados.

Transyt: Modelo computacional para sincronizar una red de semáforos.
ANEXO N°1

Medición de Flujos Vehiculares
(Vehículos en 15 minutos)

INTERSECCION
Medidor: Fono...
Supervisor: Fono...

Día y Fecha

<table>
<thead>
<tr>
<th>Hora</th>
<th>Autos Particulares</th>
<th>Taxis vacíos</th>
<th>Taxis colectivos</th>
<th>Taxibuses</th>
<th>Buses y Micros</th>
<th>Cam. 2 ejes</th>
<th>Cam. 2 ejes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VSTT : Valor social del tiempo de trabajo, el cual se refiere sólo a viajes realizados como parte de la actividad laboral de las personas.

VSTN : Valor social del tiempo normal, que considera todos los otros propósitos de viaje, incluyendo el viaje al trabajo.

Se tiene que:

Fórmula A2-1

\[
\begin{align*}
VSTT &= SPEA \ (1) \\
VSTN &= 0,43 \times SPEA \ (2)
\end{align*}
\]

SPEA : Salario promedio en el país de un empleado adulto a jornada completa

2. **Calcule del salario promedio por hogar a nivel nacional.**

Se define:

SPH : Salario promedio por hogar a nivel nacional

Fórmula A2-2: Cálculo del salario promedio por hogar a nivel nacional

\[
SPH = \frac{\text{Ingresos nacionales afectados por la variable tiempo}}{\text{Número de hogares a nivel nacional}}
\]

El ingreso nacional de cada país se debe obtener de algún organismo de planificación nacional. Por ejemplo, en Chile, ese dato se obtiene a través de la encuesta CASEN, la que es realizada por el Ministerio de Planificación y Cooperación.

Para efectos del ejemplo, se supondrá:

- Ingresos afectados por tiempo = $ 343.879.013.900
ANEXO N° 2
METODOLOGIA DE ESTIMACION DEL VALOR SOCIAL DEL TIEMPO10

Los ahorros de tiempo constituyen un elemento clave en la evaluación socio-económica de proyectos de vialidad urbana. Para su valoración, el tiempo se clasifica en dos grandes categorías:

i) Tiempo de trabajo, el que se refiere solo a viajes realizados como parte de la actividad laboral de las personas. Este ahorro de tiempo se valora como el ingreso bruto del viajero. Definido así, debería tenerse un valor diferente para cada usuario beneficiado con el proyecto, sin embargo se recomienda un valor único, igual al sueldo promedio en el país de un empleado adulto a jornada completa. Dicha recomendación permite que exista consistencia entre las evaluaciones de diferentes proyectos, pero por sobre todo tiene la característica de incorporar la equidad entre los individuos, regiones y modos de transporte, al usarse un valor único para todos ellos.

ii) Tiempo normal, que considera todos los otros propósitos de viaje, incluyendo el viaje hacia y desde el trabajo. A diferencia del tiempo de trabajo, el ahorro de tiempo normal se valora como un porcentaje del salario bruto. La determinación de dicho porcentaje puede hacerse a través de encuestas usando el método de preferencias reveladas y/o declaradas. Dado que dichos métodos son costosos de llevar a cabo, cabe mencionar que en una minuciosa investigación llevada a cabo en Inglaterra (Policy Journals, 1987), se determinó que dicho porcentaje alcanza el 43% del sueldo promedio de un empleado adulto a jornada completa.

Ejemplo del cálculo del valor social del tiempo.

1. Fórmulación

\[VST = VSTT \times \%\text{viajesdetrabajo} + VSTN \times \%\text{otrosviajes} \]

donde:

VST : Valor social del tiempo

10 SECTU; 1988
Para el ejemplo, se usarán los porcentajes obtenidos de la encuesta mencionada.

% de viajes de trabajo = 3,08%

% de viajes por otras razones = 96,92%

Se utilizará estas proporciones de viajes para todo el país.

Entonces, el valor social del tiempo de viaje está dado por:

\[\text{VST} = 0,0308 \times 456,41 + 0,9692 \times 196,26 = \$204,27/\text{hr.} \]
- N° de hogares = 3,197,429

Por tanto:
SPH = $ 107.548,5 / hogar

3. Cálculo del salario promedio de un empleado adulto a jornada completa
Se debe obtener la información del número de trabajadores a nivel nacional. Para el ejemplo, se supone:

N° de trabajadores a nivel nacional = 4,382,990

Por tanto:
N° de trabajadores por hogar = 4,372,990/3,197,429 = 1,37 (trab. / hog.)
Entonces:
SPEA = 107,548,5/1,37 = $ 78,502,6 / trab.

4. Cálculo del valor social del tiempo.
De (1), se tiene que:
VSTT = 78,502,6/172 = $ 456,41 / hr.
De (2), se tiene que:
VSTN = 78,502,6 * 0,43/172 = 196,26 / hr.

Se ha considerado 172 horas de trabajo al mes.
Además, se debe estimar la proporción de viajes con "propósito de trabajo" y "otros". En Chile, estos porcentajes se han obtenido de la "Encuesta de Origen - Destino de viajes del Gran Santiago", realizada en 1991.
ANEXO N° 3
VALORES DE RUGOSIDADES DE CAMINOS PARA DIFERENTES NIVELES DE SERVICIABILIDAD

<table>
<thead>
<tr>
<th>Estado de Pavimento</th>
<th>Rango IRI (m/Km)</th>
<th>Rango BI (mm/Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavimentos nuevos</td>
<td>1,8 - 3,5</td>
<td>1.217 - 2.563</td>
</tr>
<tr>
<td>Pavimentos usados</td>
<td>2,2 - 6,0</td>
<td>1.524 - 4.687</td>
</tr>
<tr>
<td>Sin pavimentar, cuidados</td>
<td>4,0 - 10,5</td>
<td>2.976 - 8.771</td>
</tr>
<tr>
<td>Pavimentos deteriorados</td>
<td>4,5 - 11,0</td>
<td>3.396 - 9.241</td>
</tr>
<tr>
<td>Sin pavimentar y sin cuidar</td>
<td>8,5 - 15,0</td>
<td>6.923 - 13.079</td>
</tr>
</tbody>
</table>

Fuente: MIDEPLAN, Chile; "Guía para la elaboración, evaluación y presentación de proyectos de vialidad intermedia", 1996.
ANEXO N° 4
ASPECTOS CONSIDERADOS EN ANTEPROYECTOS DE INGENIERÍA

Los anteproyectos de ingeniería de proyectos de vialidad urbana contemplan un anteproyecto físico y un anteproyecto operacional, los cuales deben abordar los aspectos que se detallan a continuación:

a) Anteproyecto físico
En este fase se debe completar la representación de los diseños. La geometría de los elementos de infraestructura vial y de servicios, así como las afecciones a la propiedad que resulten del diseño, deberán ser objeto de cálculos para determinar con exactitud sus posiciones y dimensiones.

- Trazado geométrico
Como primer paso se debe elaborar el trazado geométrico a nivel de anteproyecto, el que comienza con una composición gráfica de los elementos constitutivos de la plataforma vial. Posteriormente debe hacerse una definición matemática de dicha composición gráfica, de modo que sea posible calcular y replantear coordenadas (x,y) de cualquier punto de las superficies vehiculares contempladas, y dibujar los elementos viales de dicho prediseño a partir de la referencia confiable que brinda un conjunto de ejes de replanteo analíticamente definidos. Todo lo anterior se realiza como parte del trazado en planta.

Seguidamente, como segundo punto dentro del trazado geométrico, debe hacerse el trazado en elevación, el que básicamente consiste en hacer un replanteo de ejes, desarrollar los perfiles de terreno, perfiles longitudinales y finalmente perfiles transversales.

- Urbanismo y ambiente
A continuación, es necesario realizar las estimaciones de costo en lo referente a urbanismo y ambiente. Dentro de este punto deberá considerarse las expropiaciones que serán necesarias para la implementación del proyecto, cambios en uso de suelo público (terrenos que antes eran de uso peatonal y luego de ejecutado el proyecto serán de uso vehicular o vice-versa), y especificación de las especies vegetales afectadas.

El anteproyecto de ingeniería sólo se requiere para estudiar a nivel de prefactibilidad técnico-económico.
- Pavimentos
Realizado el trazo geométrico y el análisis de urbanismo y ambiente, deberá continuarse con el diseño del firme o pavimento, correspondiendo a la definición de las características y espesores de las capas ubicadas sobre la subrasante que configuran el pavimento ya sea flexible o rígido.

- Reposición de servicios
Esta actividad persigue la doble finalidad de asegurar la factibilidad técnica de las obras que se proyectan e identificar y costear la reposición de las interferencias producidas sobre las redes de servicios públicos. Ello se logra mediante el diseño físico de las modificaciones, basándose en los criterios técnicos que imponen los organismos que operan y mantienen las redes de servicios.

- Estructuras
El diseño físico de las estructuras contenidas en el anteproyecto (puentes, pasos y muros) tiene como objetivos principales definir su geometría y constitución material, para efectos descriptivos y de cubricaciones y presupuesto, como también garantizar la factibilidad técnica de la solución adoptada.

b) Anteproyecto operacional
El proyecto operacional especifica las condiciones de uso de la vialidad, es decir, determina un conjunto de regulaciones que constituyen el sistema de control del tránsito. Estas regulaciones deben ser comunicadas eficientemente a los usuarios mediante un sistema de información que abarca señales, marcas y otros dispositivos. Que las regulaciones sean respetadas no puede darse por hecho; evidentemente, si están bien concebidas y apoyadas por una correcta información, es más probable que así suceda. Pero siempre hay usuarios para los cuales es beneficioso contravenir las reglas dispuestas, lo que hace necesario un sistema complementario de fiscalización. En rigor, el diseño operacional cubre los tres sistemas mencionados, ya que la armonía entre ellos es crucial en orden a que las condiciones de uso especificadas correspondan a las reales. No obstante, en esta etapa de anteproyecto se establecen requerimientos diferenciados al respecto según el tipo de proyecto.

Aunque esta actividad se refiere al uso de la vialidad disponible, puede conllevar modificaciones menores al diseño físico establecido. El propósito que se persigue es obtener las mejores condiciones de
circulación, dadas la infraestructura y las demandas que soporta, de acuerdo con los objetivos del proyecto. Las características físicas varían entre alternativas de diseño y las demandas lo hacen en el tiempo para cada alternativa y entre éstas, si hay reasignación. Luego, se requiere un antepronecto operacional para cada periodo en que las variaciones de la demanda significuen un cambio en el diseño operacional de cada situación. En algunos de éstos se cuenta con un prediseño utilizado en la selección de alternativas, el cual servirá de base.

El antepronecto debe procurar corregir deficiencias detectadas en el prediseño y cubre todo el área de influencia, lo que no ocurre necesariamente en aquél. Además, se contempla el desarrollo de esquemas de operación para el periodo de ejecución de las obras derivadas de cada alternativa.

- **Regulaciones**

Incluyen medidas de carácter puramente operacional y otras que implican rediseños geométricos de menor cuantía, por cuyo intermedio se puede ejercer control sobre el uso de vías e intersecciones. Su necesidad deriva de la existencia de conflictos entre usuarios que no pueden ser adecuadamente resueltos por sus decisiones individuales. El tratamiento de los conflictos conlleva el manejo de variables como las indicadas a continuación:

- **Vías**

Se puede controlar el acceso a ellas y el modo de utilizarlas a través de:

- fijación del sentido de tránsito;
- restricción de ingreso, para ciertos tipos de usuario (restricción física, como altura máxima, eso por eje limitado, etc.) o estableciendo tarifas (restricción económica, como por ejemplo la tarificación por ingreso al centro de la ciudad, por usar determinadas vías a determinadas horas del día, o días de la semana, etc.).
- imposición de límites de velocidad;
- autorización de maniobras: adelantamiento, virajes en U;
- asignación de pistas de circulación: por sentido, si es doble, o reversible, y por tipo de usuario (pistas exclusivas para buses o bicicletas, calles peatonales, etc.).
- regulación de operaciones terminales: estacionamiento, carga, descarga y paradas de transporte público.

- **En intersecciones las variables principales de control son:**
 - forma de control: señal de prioridad, rotonda, semáforo;
 - autorización de movimientos: uso de pistas por movimiento, elección de vía prioritaria o programación del semáforo.

- **Aspectos geométricos**

La aplicación de ciertas técnicas de control requiere ser acompañada de cambios al diseño físico para instalar los dispositivos correspondientes. Entre ellos destacan:

 - modificaciones del ancho de la vía en la zona de intersección: ensanche para acomodar pistas especiales de viraje de corta longitud, angostamiento para restringir el estacionamiento en la calzada y/o facilitar la circulación peatonal.

 - modificaciones al alineamiento para adecuarse a la trayectoria natural de ciertos movimientos, para separar conflictos en intersecciones complejas o con fines de mejorar la visibilidad para reducir accidentes;

 - modificaciones a la carpeta de rodado, sea para aumentar capacidad o seguridad, sea para inducir reducciones de velocidad (lomos de toro, elementos vibratorios);

 - islotes para orientar trayectorias y proteger a ciertos usuarios (especialmente peatones) u otros elementos segregadores para formalizar pistas exclusivas o bien delimitar áreas para operaciones terminales (bahías o andenes para buses, "peinetas" para estacionamiento).

Todas estas variables de control, incluida la geometría detallada, están siempre definidas, explícita o tácitamente. En particular, lo están en la situación actual por lo que el diseño operacional de la situación base o de una alternativa implica cambios a lo existente, salvo cuando aparece nueva infraestructura. Por
otro parte, algunas de las variables pueden tener una especificación permanente y otras, una dependiente del tiempo. Lógicamente, los aspectos geométricos son de tipo permanente pero los operacionales pueden, casi sin excepción, ser de una u otra clase.

Las condiciones de uso, junto a la infraestructura vial disponible, determinan el valor pertinente de los parámetros característicos de los elementos de las redes a simular. Esto es, capacidades, velocidades y longitudes de recorrido. En proyectos con reasignación de flujos, influirán sobre las rutas que estos siguen y, por lo tanto, en la magnitud del flujo en cada elemento. En definitiva, la cantidad, tipo e intensidad de los conflictos que se producen en la red son función del diseño operacional, a través de los parámetros citados. Ello repercute en la estimación de impactos.

Por lo tanto, desarrollados los puntos señalados más arriba, se podrá determinar los costos involucrados por concepto del diseño operacional.
ANEXO N° 5
EJEMPLO DE APLICACION DE LA METODOLOGÍA DE VIALIDAD URBANA
PROYECTO: CONSTRUCCIÓN VÍA CIRCUNVALACIÓN TOCOPILLA

ESTUDIO A NIVEL DE PERFIL

1. INTRODUCCION

La ciudad de Tocopilla constituye el principal núcleo poblado de la provincia del mismo nombre, ubicada en la II Región de Chile. Tiene 24.764 habitantes, de los cuales un 98,7% se localiza en el casco urbano.

La tasa de crecimiento intercensal 1982 - 1992 alcanzó un 12,5 %, cifra que supera la media histórica.

La planicie litoral en la cual se asienta el casco urbano es estrecha, factor que ha estimulado un crecimiento en extensión y consecuente con ello, una densificación poblacional reducida.

La Comuna presenta una tasa de motorización de 12 habitantes/veh, no obstante, el tránsito vehicular y peatonal se ve favorecido debido a que el 95 % de las vías urbanas presentan calzada asfaltada y cerca de un 90 % de ellas, aceras de hormigón u otro material. El estado de conservación de aceras y calzadas fluctúa de regular a bueno.

Actualmente, el principal problema de vialidad urbana lo constituye la existencia de un sólo eje longitudinal Norte - Sur que presenta serias limitaciones operacionales.

2. Descripción del Problema

El problema que se requiere resolver tiene los siguientes componentes, los cuales se ilustran en la Figura 1.

- Existencia de una sola vía pública longitudinal norte - sur, situación que en caso de accidente ferroviario u otro, desconectaría a las dos planicies que conforman el casco urbano.

- Convergencia de flujos en la vía señalada, lo que determina que en ciertos puntos en los horarios de mayor actividad, se genere congestión vehicular.

- Limitación de paso de los vehículos de carga alta por el paso bajo nivel del puente ferroviario existente.

- Diseño geométrico irregular de la vía existente, con tramos poco expeditos y otros que revisten peligro de accidente.

- Falta de una arteria alternativa que facilite los desplazamientos vehiculares hacia el centro y sector nororiente de la ciudad.

El problema es evidente y afecta a toda la ciudad, debido a que la vía norte - sur se extiende longitudinalmente a través de la ciudad de Tocopilla.

3. **Diagnóstico de la situación actual**

3.1 **Antecedentes**

La ciudad de Tocopilla se encuentra ubicada en la II Región de Chile, en la comuna de Tocopilla. Está enclavada en dos planicies muy estrechas; la primera ubicada al norte, entre la confluencia de Quebrada Barriles y Carmelita y el acantilado junto al paso ferroviario sobre nivel, lugar en que el cordón de cerros existentes al norte de la población Villa Prat estructuran una barrera física que corta la continuidad urbana (Ver Fig. 1).
La segunda planicie se extiende desde la barrera de cerros descrita hasta el Cerro La Gringa, acantilado abrupto que llega prácticamente al mar, dejando paso sólo al camino que une Tocopilla con la ciudad de Antofagasta (Ruta 1; camino a Iquique).

En el límite urbano norte, la Ruta 1 empalma con la Avda. Leonardo Guzmán, la que continúa en la calle Arturo Prat, constituyendo este eje la única vía que permite el paso vehicular entre ambas planicies.

Existe otro problema en este eje, el cual se genera en el cruce bajo nivel del puente ferroviario que pertenece a la empresa privada Servicios Integrales de Tránsito (S.I.T.). La altura del gálibo del cruce sobre nivel no permite el paso de camiones de carga alta y de buses de doble puente.

La situación descrita se agrava aún más, al considerarse que la habilitación definitiva del tramo Tocopilla - Iquique de la Ruta 1, incentivaría la reasignación significativa del flujo vehicular de la ruta 5 hacia este tramo de la Ruta 1, debido a que su utilización reduce la distancia entre Antofagasta e Iquique en aproximadamente 105 km.

3.2 **Area de estudio**

El área de estudio comprende toda la ciudad de Tocopilla, pues el eje afectado la cruza longitudinalmente de norte a sur.

3.3 **Actividades del entorno**

En el área de estudio, se desarrollan las siguientes actividades:

a. Actividades de tipo industrial:

- Termoeléctrica y muelle mecanizado de CODELCO - CHILE, División Tocopilla.
- Termoeléctrica NUEVA TOCOPILLA de NORGENER Sociedad Anónima.
- Ferrocarril Tocopilla - Toco, cancha de acopio de nitrato de sodio e infraestructura Portuaria de S.I.T. (Filial de SOQUIMICH).
- Compañía Minera de Tocopilla y otras de menor envergadura.

b. **Actividades educacionales:**
- Escuela D-7, Escuela E-10, Escuela E-12, Liceo B-2, Colegio Sagrada Familia, jardín infantil particular "El Principito", centro abierto Javiera Carrera.

c. **Transporte intercomunal**
- Transporte interprovincial e interregional

d. **Actividades comunitarias**
Plazas, centros deportivos, actividades comerciales menores, iglesias y otros.

3.4 Situación actual

3.4.1 Demanda actual

El parque vehicular de la comuna de Tocopilla en 1993 y la tasa de crecimiento que experimentó respecto al parque vehicular de 1992, se muestra en la siguiente tabla

<table>
<thead>
<tr>
<th>PARQUE VEHICULAR</th>
<th>NUMERO</th>
<th>PORCENTAJE</th>
<th>TASA DE CRECIMIENTO</th>
<th>TASA PONDERADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Automóviles</td>
<td>1,364</td>
<td>67,66</td>
<td>6,50</td>
<td>4,40</td>
</tr>
<tr>
<td>Particulares</td>
<td>454</td>
<td>22,52</td>
<td>6,00</td>
<td>1,35</td>
</tr>
<tr>
<td>- Camionetas</td>
<td>174</td>
<td>8,63</td>
<td>4,50</td>
<td>0,39</td>
</tr>
<tr>
<td>- Camiones</td>
<td>24</td>
<td>1,19</td>
<td>5,00</td>
<td>0,06</td>
</tr>
<tr>
<td>TOTALES</td>
<td>2,016</td>
<td>100,00</td>
<td></td>
<td>6,20</td>
</tr>
</tbody>
</table>

Mediante conteos vehiculares se midió el flujo del eje en estudio, detectándose que varía a lo largo de éste. Fue así, que se optó por dividir el eje en cuatro tramos, de acuerdo a sus características físicas y operacionales.
Además, con el sistema del vehículo flotante, fue posible obtener las velocidades medias de operación en cada tramo.

En la tabla siguiente, se especifican los tramos en que fue dividido el eje con sus correspondientes características.

<table>
<thead>
<tr>
<th>TRAMO</th>
<th>UBICACIÓN</th>
<th>LONGITUD (Km)</th>
<th>FLUJO (Veg/día)</th>
<th>VELOCIDAD (Km/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desde intersección de Av. Leonardo Guzmán con calle El Teniente hasta paso bajo nivel del cruce ferroviario de S.I.T.</td>
<td>1.02</td>
<td>5.744</td>
<td>39.06</td>
</tr>
<tr>
<td>2</td>
<td>Desde paso bajo nivel hasta intersección del eje con calle Sargento Aldía.</td>
<td>0.965</td>
<td>7.942</td>
<td>39.21</td>
</tr>
<tr>
<td>3</td>
<td>Desde intersección del eje con calle Sargento Aldía hasta intersección del eje con calle Carrera.</td>
<td>1.460</td>
<td>5.484</td>
<td>38.05</td>
</tr>
<tr>
<td>4</td>
<td>Desde la intersección con calle Carrera hasta empalme de calle 18 de Septiembre con Ruta 24</td>
<td>1.200</td>
<td>7.110</td>
<td>37.17</td>
</tr>
</tbody>
</table>

En la cuantificación de la demanda vehicular, no se identificaron periodos diferentes en el día, por lo que se consideró un único flujo vehicular promedio diario, en cada tramo.

3.4.2 Proyección de la demanda

Para determinar la demanda futura se estimó una tasa de crecimiento conservadora de un 2% para todos los tipos de vehículos. Esta estimación es baja si se considera que en 1993 la tasa de crecimiento ponderada del parque vehicular de la comuna fue de un 6,17 % respecto al año 1992.

Considerando un horizonte de proyecto de 15 años. Los flujos proyectados para cada tramo, son los siguientes:
<table>
<thead>
<tr>
<th>AÑOS</th>
<th>TRAMO 1</th>
<th>TRAMO 2</th>
<th>TRAMO 3</th>
<th>TRAMO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.744</td>
<td>7.942</td>
<td>5.484</td>
<td>7.110</td>
</tr>
<tr>
<td>1</td>
<td>5.858</td>
<td>8.102</td>
<td>5.594</td>
<td>7.252</td>
</tr>
<tr>
<td>2</td>
<td>5.975</td>
<td>8.264</td>
<td>5.705</td>
<td>7.397</td>
</tr>
<tr>
<td>3</td>
<td>6.095</td>
<td>8.429</td>
<td>5.819</td>
<td>7.545</td>
</tr>
<tr>
<td>4</td>
<td>6.217</td>
<td>8.598</td>
<td>5.935</td>
<td>7.696</td>
</tr>
<tr>
<td>5</td>
<td>6.341</td>
<td>8.770</td>
<td>6.054</td>
<td>7.850</td>
</tr>
<tr>
<td>6</td>
<td>6.468</td>
<td>8.945</td>
<td>6.175</td>
<td>8.007</td>
</tr>
<tr>
<td>7</td>
<td>6.597</td>
<td>9.124</td>
<td>6.054</td>
<td>8.167</td>
</tr>
<tr>
<td>10</td>
<td>7.001</td>
<td>9.682</td>
<td>6.425</td>
<td>8.667</td>
</tr>
<tr>
<td>11</td>
<td>7.141</td>
<td>9.876</td>
<td>6.554</td>
<td>8.840</td>
</tr>
<tr>
<td>12</td>
<td>7.284</td>
<td>10.073</td>
<td>6.685</td>
<td>9.017</td>
</tr>
<tr>
<td>13</td>
<td>7.430</td>
<td>10.274</td>
<td>6.819</td>
<td>9.197</td>
</tr>
<tr>
<td>14</td>
<td>7.579</td>
<td>10.479</td>
<td>6.955</td>
<td>9.380</td>
</tr>
<tr>
<td>15</td>
<td>7.749</td>
<td>10.689</td>
<td>7.094</td>
<td>9.568</td>
</tr>
</tbody>
</table>

Se observa que en el año 0 la demanda vehicular en el tramo de mayor tráfico es de 7.942 veq/día, es decir, 2.898.830 veq/año. De acuerdo a observaciones, se ha estimado que durante 12 horas se produce el volumen vehicular representativo del día; lo que indica que en el tramo 2, la demanda vehicular por hora es de 662 veq.
Este tramo tiene dos pistas, por lo que el flujo por pista es de 331 veq/hr.

3.4.3 Oferta actual

El único acceso sur al centro de la ciudad de Tocopilla lo constituye la Avda. Leonardo Guzmán. Posee una calzada de 16 m. de ancho y 2.080 m. de largo, hasta el cruce CODELCO en que esta vía continúa en calle Arturo Prat, la que se angosta en los tramos próximos al puente de S.I.T., transformándose en una vía de circulación de dos pistas asfaltadas con doble sentido de tránsito.

a) Características geométricas de la situación base.

La irregularidad en el diseño geométrico en los dos primeros tramos de la vía, se resume en la siguiente tabla:

<table>
<thead>
<tr>
<th>TABLA N° 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTOR</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Avda. Leonardo Guzmán</td>
</tr>
<tr>
<td>Prof. A. Prat (empalme con Avda. Leonardo Guzmán)</td>
</tr>
<tr>
<td>A. Prat (sector ex escuela N° 4)</td>
</tr>
<tr>
<td>A. Prat (sector villa Prat)</td>
</tr>
<tr>
<td>A. Prat (Sector puente S.I.T.)</td>
</tr>
</tbody>
</table>

En el último tramo, la prolongación Prat desemboca en calle Arturo Prat con un ángulo de incidencia que reviste serio peligro de accidentes por la dificultad que implica el viraje de los vehículos hacia la izquierda.

Por la Avda. Leonardo Guzmán y la prolongación de la calle Prat transitan automóviles particulares, taxis, camiones, buses y en general, cualquier vehículo que por su altura pueda franquear el paso bajo nivel del puente ferroviario de S.I.T. (altura = 3,82 m). vehículos tales como camiones de carga alta, buses de doble puente y otros, por su altura, se ven impedidos de ingresar al centro de la ciudad, debiendo para ello y previa autorización, ingresar a caminos privados trazados en terrenos de propiedad de S.I.T., cuyo diseño
obedece a características operacionales de la empresa y no a los estándares propios de la vialidad urbana.

La Avda. Arturo Prat, a la altura de la calle Bernardo O’Higgins empalma con la Avda. 18 de Septiembre, un arteria amplia de 4 pistas separada por un bandejo central de anchura variable.

Finalmente, esta última se conecta con la ruta 24 que une el puerto de Tocopilla con las oficinas salitreras, Chuquicamata y Calama.

En todo el trayecto del eje existen señalizaciones de tránsito que regulan convenientemente el desplazamiento vehicular. No existen semáforos.

b) **Estado de la carpeta de rodado de la situación base.**

El estado de la carpeta de rodado del eje se determina por la rugosidad de la calzada. De acuerdo a antecedentes existentes en la Secretaría Regional Ministerial de Vivienda, se estableció que la carpeta está en regulares a malas condiciones, estimándose un valor de BI constante para todo el eje igual a 4.000 mm/km.

4. **Definición de las alternativas de solución**

De acuerdo a los problemas que se detectan en el eje en estudio, los objetivos del proyecto que se proponga serán:

- Mejorar la oferta vial para vehículos que difieren en sus características físicas y operacionales, particularmente para los de transporte de carga y otros mayores que por su altura se ven impedidos de ingresar a la ciudad.

- Sortear la barrera que divide a la ciudad en dos áreas físicamente próximas pero con diferentes niveles de desarrollo comunitario, favoreciendo la continuidad ambiental y el uso del suelo con fines habitacionales.
- Prevenir situaciones de congestionamiento en áreas de acceso al puerto y otros sectores productivos.

- Potenciar las inversiones derivadas de la habilitación, mejoramiento y construcción de la Ruta 1; camino costero que conecta a las ciudades de Antofagasta, Tocopilla e Iquique.

4.1 Optimización de la Situación Actual

La optimización de la situación actual consistirá en efectuar las siguientes modificaciones al eje en estudio, es decir, Avda. Leonardo Guzmán - Arturo Prat - Avda. 18 de Septiembre.

a. Mejoramiento del diseño geométrico en el sector Villa Prat con el objeto de disminuir el ángulo de incidencia y facilitar el viraje de los vehículos hacia la izquierda.

b. Bajar la rasante en el paso bajo nivel del cruce ferroviario de S.I.T. (3,2 a 3,5 m)

c. Mejorar el acceso vehicular en el empalme de las calles Arturo Prat y Avda. 18 de Septiembre.

d. Mejorar las condiciones del tránsito peatonal en diversos sectores.

Estas mejoras permitirán aumentar la velocidad de circulación media de los vehículos, estimándose que crecerá uniformemente en un 5% en todos los tramos.

Las velocidades medias para la situación base optimizada son:

| TABLA N° 5 |
| VELOCIDADES SITUACION BASE OPTIMIZADA |
| (Km/hr) |

<table>
<thead>
<tr>
<th>Tramo 1</th>
<th>Tramo 2</th>
<th>Tramo 3</th>
<th>Tramo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>41,01</td>
<td>39,21</td>
<td>38,05</td>
<td>37,17</td>
</tr>
</tbody>
</table>
4.2 Identificación del proyecto propuesto

Se considera sólo una alternativa de proyecto, pues no se visualiza que aparte de la optimización de la situación base se puedan plantear otras opciones de proyecto consistentes en el mejoramiento del eje en estudio.

Por ello, la alternativa de proyecto que se propone consiste en la habilitación de una vía de 4.395 metros de largo, en que un 49 % del trazado propuesto implica normalización y/o mejoramiento de la calle Guillermo Matta.

Las obras que considera el proyecto son:

a. Mejoramiento de trazado y pavimentación de un tramo que se iniciaría en la intersección de Avda. L. Guzmán con calle El Teniente, en 500 m de longitud de doble vía y bandejón central iluminado.

b. Construcción de un tramo de trazado tangencial al casco urbano (excavación en roca). Plataforma de 10 m y calzada de 7 m. Incluye berma oriente de 1,5 m. y vereda de 1,5 m en sector poniente.

c. Mejoramiento de trazado y pavimentación de un tramo corto de Guillermo Matta entre San Martín y Bolívar.

d. Ampliación de la calzada de calle Guillermo Matta entre Bolívar y Chorrillo (2.150 m).

e. Mejoramiento empalme Guillermo Matta - Ruta 24 (salida oriente de Tocopilla)

f. Reposición, en diferentes sectores, de soleras y aceras deterioradas.
4.2.1 Oferta en situación con proyecto

a) **Características geométricas de la situación con proyecto**

De acuerdo a las obras por realizar, la circunvalación propuesta también se ha dividido en cuatro tramos, que se indican en la siguiente tabla:

<table>
<thead>
<tr>
<th>TRAMO</th>
<th>UBICACIÓN</th>
<th>LONGITUD (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desde intersección de Av. Leonardo Guzmán con calle El Teniente hasta ladera del cerro.</td>
<td>1,17</td>
</tr>
<tr>
<td>2</td>
<td>Desde ladera del cerro hasta intersección de calle Guillermo Matta con calle Bolivar.</td>
<td>1,07</td>
</tr>
<tr>
<td>3</td>
<td>Desde intersección Guillermo Matta con calle Bolivar hasta intersección con calle Carrera.</td>
<td>0,98</td>
</tr>
<tr>
<td>4</td>
<td>Desde la intersección de Guillermo Matta con calle Carrera hasta empalme de Guillermo Matta con Ruta 24</td>
<td>1,18</td>
</tr>
</tbody>
</table>

b) **Estado de la carpeta de rodado de la situación con proyecto.**

Considerando que la ejecución de la circunvalación significará realizar tramos nuevos y otros se pavimentarán, se estima que la rugosidad en la situación con proyecto será de 2.000 mm/km, para todo el eje; índice que corresponde a pavimentos nuevos o en buenas condiciones.

5. **Evaluación del proyecto propuesto.**

5.1 **Inversión privada**

5.1.1 **Inversión privada situación base optimizada**

La inversión privada de la situación base optimizada asciende a $ 53.900.247 y su desglose se indica en Cuadro N° 1 adjunto.
CUADRO N° 1
PRESUPUESTO INVERSION SITUACION ACTUAL OPTIMIZADA MEJORAMIENTO EJE LONGITUDINAL AVDA. L. GUZMAN - ARTURO PRAT - AVDA. 11 DE SEPTIEMBRE

| ITEM | UNIDAD | CANTIDAD | PRECIO UNITARIO $ | TOTAL
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimiento de Tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavación en roca</td>
<td>M³</td>
<td>1.490.00</td>
<td>2.821.00</td>
<td>4.203.29</td>
</tr>
<tr>
<td>Term. y limpieza plataforma</td>
<td>Km</td>
<td>1.00</td>
<td>227.850.00</td>
<td>227.85</td>
</tr>
<tr>
<td>Prep. de la subrasante</td>
<td>M³</td>
<td>3.260.00</td>
<td>192.00</td>
<td>625.92</td>
</tr>
<tr>
<td>Sub Bases Bases, Bases y Bermas</td>
<td>M³</td>
<td>489.0</td>
<td>1.100.00</td>
<td>537.90</td>
</tr>
<tr>
<td>Revestimiento de Pavimentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imprinación asfáltica</td>
<td>M²</td>
<td>3.260.00</td>
<td>298.00</td>
<td>971.48</td>
</tr>
<tr>
<td>Calzada asfáltica 7cm.</td>
<td>M²</td>
<td>3.260.00</td>
<td>3.600.00</td>
<td>11.736.00</td>
</tr>
<tr>
<td>Elementos de Control y Seguridad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schal caminera nueva</td>
<td>Nº</td>
<td>6.00</td>
<td>62.981.00</td>
<td>377.89</td>
</tr>
<tr>
<td>Demarcación con línea continua</td>
<td>Km</td>
<td>0.80</td>
<td>46.500.00</td>
<td>37.20</td>
</tr>
<tr>
<td>Demarcación con línea segmentada</td>
<td>Km</td>
<td>4.00</td>
<td>38.750.00</td>
<td>155.00</td>
</tr>
<tr>
<td>Demarcación con línea Lateral</td>
<td>Km</td>
<td>1.70</td>
<td>34.100.00</td>
<td>57.97</td>
</tr>
<tr>
<td>Tachas reflectantes</td>
<td>Nº</td>
<td>0.60</td>
<td>16.585.00</td>
<td>9.95</td>
</tr>
<tr>
<td>Tránsito Peatonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum. Y colocación soleras rectas</td>
<td>Ml</td>
<td>1.645.00</td>
<td>4.200.00</td>
<td>6.909.00</td>
</tr>
<tr>
<td>Sum. Y colocación soleras curvas</td>
<td>Ml</td>
<td>195.00</td>
<td>4.300.00</td>
<td>838.50</td>
</tr>
<tr>
<td>Base estabilizada acera 0.08</td>
<td>M³</td>
<td>462.00</td>
<td>650.00</td>
<td>300.30</td>
</tr>
<tr>
<td>Aceras de hormigón 0.7 Cm</td>
<td>M³</td>
<td>5.776.00</td>
<td>4.500.00</td>
<td>25.992.00</td>
</tr>
<tr>
<td>Bajada minusválido</td>
<td></td>
<td>46.00</td>
<td>20.000.00</td>
<td>920.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>53.900.25</td>
</tr>
</tbody>
</table>

5.1.2 Inversión privada situación con proyecto

En este caso, la inversión privada es de $ 301.508.560. En Cuadro N° 2 adjunto, se detallan las partidas del presupuesto.
CUADRO Nº 2
PRESUPUESTO INVERSION SITUACION CON PROYECTOS
CONSTRUCCION AVDA. CIRCUNVALACION DE TOCOPILLA

<table>
<thead>
<tr>
<th>ITEM</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>PRECIO UNITARIO $</th>
<th>TOTAL (Miles de $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimiento de Tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavación en tierra común</td>
<td>M³</td>
<td>5.100</td>
<td>310</td>
<td>1.581</td>
</tr>
<tr>
<td>Excavación en roca</td>
<td>M³</td>
<td>17.850</td>
<td>2.821</td>
<td>50.355</td>
</tr>
<tr>
<td>Terraplen</td>
<td>M³</td>
<td>6.000</td>
<td>1.597</td>
<td>9.582</td>
</tr>
<tr>
<td>Term. y limpieza plataforma</td>
<td>Km</td>
<td>3</td>
<td>227.850</td>
<td>684</td>
</tr>
<tr>
<td>Prep. de la subsanante</td>
<td>M²</td>
<td>24.200</td>
<td>192</td>
<td>4.646</td>
</tr>
<tr>
<td>Sub Bases Bases, Bases y Bermas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base estabilizada 0.10</td>
<td>M³</td>
<td>220</td>
<td>750</td>
<td>165</td>
</tr>
<tr>
<td>Base estabilizada 0.15</td>
<td>M³</td>
<td>3.300</td>
<td>1.100</td>
<td>3.630</td>
</tr>
<tr>
<td>Revestimiento de Pavimentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imprimación asfáltica</td>
<td>M²</td>
<td>17.600</td>
<td>298</td>
<td>5.245</td>
</tr>
<tr>
<td>Calzada asfáltica 7cm.</td>
<td>M²</td>
<td>17.600</td>
<td>3.600</td>
<td>63.360</td>
</tr>
<tr>
<td>Protección de la Plataforma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muro de contención</td>
<td>M¹</td>
<td>1.440</td>
<td>47.448</td>
<td>68.325</td>
</tr>
<tr>
<td>Elementos de Control y Seguridad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Señal caminera nueva</td>
<td>Nº</td>
<td>6</td>
<td>62.981</td>
<td>378</td>
</tr>
<tr>
<td>Demarcación con línea continua</td>
<td>Km</td>
<td>0</td>
<td>46.500</td>
<td>19</td>
</tr>
<tr>
<td>Demarcación con línea segmentada</td>
<td>Km</td>
<td>4</td>
<td>38.750</td>
<td>155</td>
</tr>
<tr>
<td>Demarcación con línea lateral</td>
<td>Km</td>
<td>2</td>
<td>34.100</td>
<td>58</td>
</tr>
<tr>
<td>Tachas reflectantes</td>
<td>Nº</td>
<td>0</td>
<td>16.585</td>
<td>7</td>
</tr>
<tr>
<td>Tránsito Peatonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum. Y colocación soleras rectas</td>
<td>Ml</td>
<td>6.096</td>
<td>4.200</td>
<td>25.603</td>
</tr>
<tr>
<td>Sum. Y colocación soleras curvas</td>
<td>Ml</td>
<td>543</td>
<td>4.300</td>
<td>2.335</td>
</tr>
<tr>
<td>Base estabilizada acera 0.08</td>
<td>M²</td>
<td>1.141</td>
<td>650</td>
<td>742</td>
</tr>
<tr>
<td>Aceras de hormigón 0.7 Cm</td>
<td>M²</td>
<td>5.162</td>
<td>4.500</td>
<td>23.229</td>
</tr>
<tr>
<td>Bajada minusválido</td>
<td></td>
<td>60</td>
<td>20.000</td>
<td>1.200</td>
</tr>
<tr>
<td>Subtotal Avenida</td>
<td></td>
<td></td>
<td></td>
<td>259.717</td>
</tr>
<tr>
<td>Expropiaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viviendas sector huella tres puntas</td>
<td>M²</td>
<td>1.018</td>
<td>25.000</td>
<td>25.450</td>
</tr>
<tr>
<td>Vivienda sector la patria</td>
<td>M²</td>
<td>156</td>
<td>92.000</td>
<td>14.352</td>
</tr>
<tr>
<td>Trámites judiciales (5% costo)</td>
<td></td>
<td></td>
<td></td>
<td>1.990</td>
</tr>
<tr>
<td>Sutotal Expropiaciones</td>
<td></td>
<td></td>
<td></td>
<td>41.792</td>
</tr>
<tr>
<td>Costo total alternativa proyecto</td>
<td></td>
<td></td>
<td></td>
<td>301.509</td>
</tr>
</tbody>
</table>

5.2 Inversión Social

La inversión social de ambas situaciones se estimó como un 85 % de la inversión privada. Los valores se indican a continuación:
5.3 Costos de conservación

5.3.1 Costo de conservación situación base optimizada

De acuerdo al gasto histórico en conservación, se estimó que en la situación base optimizada los costos de conservación anual serían de aproximadamente un 13% del costo de inversión. De este modo, el costo privado estimado fue de $ 7.242.484.

El costo de conservación social se estimó de un 85 % del costo privado, es decir, $ 6.156.414.

5.3.2 Costo de conservación situación con proyecto

En virtud de antecedentes de otros estudios realizados, se estimó que para la situación con proyecto, el costo de conservación ascendería a un 2,25 % del costo de inversión. De este modo, el costo de conservación anual resultó de $ 6.844.888.

El costo social de conservación se estimó como un 85% del costo privado, es decir, $ 5.818.154 anuales.

5.4 Identificación y cuantificación de los beneficios.

5.4.1 Beneficios por ahorro de tiempo de viaje

Los beneficios por ahorro de tiempo de viaje se obtienen del diferencial de tiempos de viaje de las situaciones sin y con proyecto.

En el Cuadro N° 3 se indica los consumos de tiempo de los usuarios en la situación sin proyecto, para cada año del horizonte de evaluación, los cuales se calcularon para cada tramo en que se dividió el eje.

El costo total por consumo de tiempo en la situación base es de $ 576.029.041, para el año 0.
CUADRO Nº 3
CALCULO DEL CONSUMO DE TIEMPO DE VIAJE SITUACION BASE OPTIMIZADA

<table>
<thead>
<tr>
<th>Tramo Nº 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia del tramo (km)</td>
<td>1,02</td>
</tr>
<tr>
<td>Velocidad media (km/hr)</td>
<td>41,01</td>
</tr>
<tr>
<td>Tiempo de viaje (hr)</td>
<td>0,024872</td>
</tr>
<tr>
<td>Número de viajes diarios (veh/día)</td>
<td>5,774</td>
</tr>
<tr>
<td>Viñales diarios en auto (autos/día)</td>
<td>3,800</td>
</tr>
<tr>
<td>Viñales diarios en buses (buses/día)</td>
<td>987</td>
</tr>
<tr>
<td>Tasa media de ocupación autos</td>
<td>1,5</td>
</tr>
<tr>
<td>Tasa media de ocupación buses</td>
<td>28</td>
</tr>
<tr>
<td>Valor unitario del tiempo ($/día)</td>
<td>336</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios auto (hrs)</td>
<td>141,7703</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios buses (hrs)</td>
<td>687,3621</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 1 ($/día)</td>
<td>278,588,49</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 1 ($/año)</td>
<td>101,684,798,36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo Nº 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia del tramo (km)</td>
<td>0,965</td>
</tr>
<tr>
<td>Velocidad media (km/hr)</td>
<td>37,5</td>
</tr>
<tr>
<td>Tiempo de viaje (hr)</td>
<td>0,025837</td>
</tr>
<tr>
<td>Número de viajes diarios</td>
<td>7,492</td>
</tr>
<tr>
<td>Viñales diarios en auto (autos/día)</td>
<td>4,900</td>
</tr>
<tr>
<td>Viñales diarios en buses (buses/día)</td>
<td>1,296</td>
</tr>
<tr>
<td>Tasa media de ocupación autos</td>
<td>1,5</td>
</tr>
<tr>
<td>Tasa media de ocupación buses</td>
<td>28</td>
</tr>
<tr>
<td>Valor unitario del tiempo ($/día)</td>
<td>336</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios auto (hrs)</td>
<td>189,0996</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios buses (hrs)</td>
<td>937,5614</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 2 ($/día)</td>
<td>378,826,91</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 2 ($/año)</td>
<td>138,271,822,46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo Nº 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia del tramo (km)</td>
<td>1,5</td>
</tr>
<tr>
<td>Velocidad media (km/hr)</td>
<td>36,24</td>
</tr>
<tr>
<td>Tiempo de viaje (hr)</td>
<td>0,041391</td>
</tr>
<tr>
<td>Número de viajes diarios</td>
<td>5,484</td>
</tr>
<tr>
<td>Viñales diarios en auto (autos/día)</td>
<td>3,600</td>
</tr>
<tr>
<td>Viñales diarios en buses (buses/día)</td>
<td>942</td>
</tr>
<tr>
<td>Tasa media de ocupación autos</td>
<td>1,5</td>
</tr>
<tr>
<td>Tasa media de ocupación buses</td>
<td>28</td>
</tr>
<tr>
<td>Valor unitario del tiempo ($/día)</td>
<td>336</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios auto (hrs)</td>
<td>223,5099</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios buses (hrs)</td>
<td>1,091,7219</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 3 ($/día)</td>
<td>441,917,88</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 3 ($/año)</td>
<td>161,300,026,49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo Nº 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia del tramo (km)</td>
<td>1,2</td>
</tr>
<tr>
<td>Velocidad media (km/hr)</td>
<td>35,4</td>
</tr>
<tr>
<td>Tiempo de viaje (hr)</td>
<td>0,033898</td>
</tr>
<tr>
<td>Número de viajes diarios</td>
<td>7,110</td>
</tr>
<tr>
<td>Viñales diarios en auto (autos/día)</td>
<td>4,600</td>
</tr>
<tr>
<td>Viñales diarios en buses (buses/día)</td>
<td>1,255</td>
</tr>
<tr>
<td>Tasa media de ocupación autos</td>
<td>1,5</td>
</tr>
<tr>
<td>Tasa media de ocupación buses</td>
<td>28</td>
</tr>
<tr>
<td>Valor unitario del tiempo ($/día)</td>
<td>336</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios auto (hrs)</td>
<td>233,8983</td>
</tr>
<tr>
<td>Consumo de tiempo usuarios buses (hrs)</td>
<td>1,191,1864</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 4 ($/día)</td>
<td>478,828,47</td>
</tr>
<tr>
<td>Costo tiempo usuarios tramo 4 ($/año)</td>
<td>174,772,393,22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo total tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>situación sin proyecto - año 0</td>
</tr>
</tbody>
</table>

En el Cuadro Nº 4 se muestran los consumos de tiempo de los usuarios en la situación con proyecto, para cada año del horizonte de evaluación, los cuales se calcularon para cada tramo en que se dividió el eje.
Tramo N° 1	Distancia del tramo 1 eje actual (km)	1,02
	Distancia del tramo 1 circunvalación (km)	1,17
	Velocidad media eje (km/hr)	41,01
	Velocidad media circunvalación (km/hr)	45
	Tiempo de viraje en eje actual (hr)	0,024872
	Tiempo de viraje en circunvalación (hr)	0,026
	Viages diarios en auto eje actual (autos/días)	2,660
	Viages diarios en auto circunvalación (autos/días)	1,140
	Tasa media de ocupación autos	691
	Tasa media de ocupaciones buses	28
	Valor unitario del tiempo ($/hr)	336
	Tiempo usuarios en eje actual (hrs/día)	580,462,226,189
	Tiempo usuarios en circunvalación (hrs/día)	259,948
	Costo tiempo usuarios tramo 1 ($/día)	792,377,87
	Costo tiempo usuarios tramo 1 ($/año)	103,067,922,41

Tramo N° 2	Distancia del tramo 2 eje actual (km)	0,97
	Distancia del tramo 2 circunvalación (km)	1,07
	Velocidad media eje (km/hr)	39,21
	Velocidad media circunvalación (km/hr)	45
	Tiempo de viraje en eje actual (hr)	0,02461
	Tiempo de viraje en circunvalación (hr)	0,02377778
	Viages diarios en auto eje actual (autos/días)	3,430
	Viages diarios en auto circunvalación (autos/días)	1,470
	Viages diarios en bases eje actual (autos/días)	907
	Viages diarios en bases circunvalación (autos/días)	389
	Tasa media de ocupación autos	1,5
	Tasa media de ocupaciones buses	28
	Valor unitario del tiempo ($/hr)	336
	Tiempo usuarios en eje actual (hrs/día)	751,646,64
	Tiempo usuarios en circunvalación (hrs/día)	311,4176
	Costo tiempo usuarios tramo 2 ($/día)	357,149,37
	Costo tiempo usuarios tramo 2 ($/año)	130,374,159,71

Tramo N° 3	Distancia del tramo 3 eje actual (km)	1,46
	Distancia del tramo 3 circunvalación (km)	0,98
	Velocidad media eje (km/hr)	38,05
	Velocidad media circunvalación (km/hr)	45
	Tiempo de viraje en eje actual (hr)	0,034381
	Tiempo de viraje en circunvalación (hr)	0,0218
	Viages diarios en auto eje actual (autos/días)	2,520
	Viages diarios en auto circunvalación (autos/días)	1,080
	Viages diarios en bases eje actual (autos/días)	659
	Viages diarios en bases circunvalación (autos/días)	283
	Tasa media de ocupación autos	1,5
	Tasa media de ocupaciones buses	28
	Valor unitario del tiempo ($/hr)	336
	Tiempo usuarios en eje actual (hrs/día)	853,054,402
	Tiempo usuarios en circunvalación (hrs/día)	207,847,111
	Costo tiempo usuarios tramo 3 ($/día)	356,462,91
	Costo tiempo usuarios tramo 3 ($/año)	130,108,961,58

Tramo N° 4	Distancia del tramo 4 eje actual (km)	1,20
	Distancia del tramo 4 circunvalación (km)	1,18
	Velocidad media eje (km/hr)	37,17
	Velocidad media circunvalación (km/hr)	45
	Tiempo de viraje en eje actual (hr)	0,032234
	Tiempo de viraje en circunvalación (hr)	0,026222
	Viages diarios en auto eje actual (autos/días)	3,220
	Viages diarios en auto circunvalación (autos/días)	1,380
	Viages diarios en bases eje actual (autos/días)	879
	Viages diarios en bases circunvalación (autos/días)	377
	Tasa media de ocupación autos	1,5
	Tasa media de ocupaciones buses	28
	Valor unitario del tiempo ($/hr)	336
	Tiempo usuarios en eje actual (hrs/día)	949,604,519,77401
	Tiempo usuarios en circunvalación (hrs/día)	331,0878
	Costo tiempo usuarios tramo 4 ($/día)	430,310,60
	Costo tiempo usuarios tramo 4 ($/año)	157,063,367,53

Costo total tiempo situación con proyecto año 0: 520,614,445 ($/año)
El costo total por consumo de tiempo en la situación con proyecto es de $520.614.445, para el año 0.

En el Cuadro N° 5 se aprecia los beneficios por ahorro de tiempo de viaje que se obtienen con la ejecución del proyecto.

CUADRO N° 5
BENEFICIOS POR AHorro DE TIEMPO Y VIAJE ($)

<table>
<thead>
<tr>
<th>AÑO</th>
<th>COSTO TIEMPO SIN PROYECTO</th>
<th>COSTO TIEMPO CON PROYECTO</th>
<th>BENEFICIOS AHORRO TIEMPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>587.549.621</td>
<td>531.056.734</td>
<td>56.522.887</td>
</tr>
<tr>
<td>1</td>
<td>599.300.614</td>
<td>541.647.269</td>
<td>57.653.345</td>
</tr>
<tr>
<td>2</td>
<td>611.286.626</td>
<td>552.480.214</td>
<td>58.806.412</td>
</tr>
<tr>
<td>3</td>
<td>623.512.359</td>
<td>563.529.818</td>
<td>59.982.540</td>
</tr>
<tr>
<td>4</td>
<td>635.982.606</td>
<td>574.800.415</td>
<td>61.182.191</td>
</tr>
<tr>
<td>5</td>
<td>648.702.258</td>
<td>586.296.423</td>
<td>62.405.835</td>
</tr>
<tr>
<td>6</td>
<td>661.676.303</td>
<td>598.022.352</td>
<td>63.653.951</td>
</tr>
<tr>
<td>7</td>
<td>674.909.829</td>
<td>609.982.799</td>
<td>64.927.030</td>
</tr>
<tr>
<td>8</td>
<td>688.408.026</td>
<td>622.182.455</td>
<td>66.225.571</td>
</tr>
<tr>
<td>9</td>
<td>702.176.186</td>
<td>634.626.104</td>
<td>67.550.082</td>
</tr>
<tr>
<td>10</td>
<td>716.219.710</td>
<td>647.318.626</td>
<td>68.901.084</td>
</tr>
<tr>
<td>11</td>
<td>730.544.104</td>
<td>660.264.998</td>
<td>70.279.106</td>
</tr>
<tr>
<td>12</td>
<td>745.154.986</td>
<td>673.470.298</td>
<td>71.684.688</td>
</tr>
<tr>
<td>13</td>
<td>760.058.086</td>
<td>686.939.704</td>
<td>73.118.382</td>
</tr>
<tr>
<td>14</td>
<td>775.259.248</td>
<td>700.678.498</td>
<td>74.580.749</td>
</tr>
</tbody>
</table>

5.4.2 Beneficios por ahorro de consumo de combustible

Los consumos de combustible de la situación base optimizada se detallan en el Cuadro N° 6.

Se observa que el costo total por este concepto, en el año 0 es de $ 87.944.633.
CUADRO Nº 6
CALCULO DEL CONSUMO DE COMBUSTIBLE SITUACION BASE OPTIMIZADA

<table>
<thead>
<tr>
<th>Tramo N° 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehículos particulares (veh/día)</td>
<td>3.800</td>
<td></td>
</tr>
<tr>
<td>Vehículos loc. colect. a petróleo (buses/día)</td>
<td>987</td>
<td></td>
</tr>
<tr>
<td>Costo social gasolina 93 ($/lt)</td>
<td>88.7</td>
<td></td>
</tr>
<tr>
<td>Costo social diesel ($/lt)</td>
<td>83.32</td>
<td></td>
</tr>
<tr>
<td>Rendimiento vehículos particulares (km/lt)</td>
<td>13.19</td>
<td></td>
</tr>
<tr>
<td>Rendimiento locom. colectiva (km/lt)</td>
<td>4.14</td>
<td></td>
</tr>
<tr>
<td>Distancia tramo (km)</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. veh. part. (lt)</td>
<td>0.0773</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. loc. col. (lt)</td>
<td>0.2464</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo gas. 93 veh. part. ($)</td>
<td>9.513.831,54</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo diesel loc. col. ($)</td>
<td>7.395.356,41</td>
<td></td>
</tr>
<tr>
<td>Costo total combustible tramo 1 ($)</td>
<td>16.909.187,95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo N° 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehículos particulares (veh/día)</td>
<td>4.900</td>
<td></td>
</tr>
<tr>
<td>Vehículos loc. colect. a petróleo (buses/día)</td>
<td>1.296</td>
<td></td>
</tr>
<tr>
<td>Costo social gasolina 93 ($/lt)</td>
<td>88.7</td>
<td></td>
</tr>
<tr>
<td>Costo social diesel ($/lt)</td>
<td>83.32</td>
<td></td>
</tr>
<tr>
<td>Rendimiento vehículos particulares (km/lt)</td>
<td>12.94</td>
<td></td>
</tr>
<tr>
<td>Rendimiento locom. colectiva (km/lt)</td>
<td>4.08</td>
<td></td>
</tr>
<tr>
<td>Distancia tramo (km)</td>
<td>0.965</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. veh. part. (lt)</td>
<td>0.0746</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. loc. col. (lt)</td>
<td>0.2365</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo gas. 93 veh. part. ($)</td>
<td>11.830.568,14</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo diesel loc. col. ($)</td>
<td>9.322.111,16</td>
<td></td>
</tr>
<tr>
<td>Costo total combustible tramo 2 ($)</td>
<td>21.152.679,31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo N° 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehículos particulares (veh/día)</td>
<td>3.600</td>
<td></td>
</tr>
<tr>
<td>Vehículos loc. colect. a petróleo (buses/día)</td>
<td>942</td>
<td></td>
</tr>
<tr>
<td>Costo social gasolina 93 ($/lt)</td>
<td>88.7</td>
<td></td>
</tr>
<tr>
<td>Costo social diesel ($/lt)</td>
<td>83.32</td>
<td></td>
</tr>
<tr>
<td>Rendimiento vehículos particulares (km/lt)</td>
<td>12.78</td>
<td></td>
</tr>
<tr>
<td>Rendimiento locom. colectiva (km/lt)</td>
<td>4.04</td>
<td></td>
</tr>
<tr>
<td>Distancia tramo (km)</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. veh. part. (lt)</td>
<td>0.1174</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. loc. col. (lt)</td>
<td>0.3713</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo gas. 93 veh. part. ($)</td>
<td>13.679.788,73</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo diesel loc. col. ($)</td>
<td>10.636.602,33</td>
<td></td>
</tr>
<tr>
<td>Costo total combustible tramo 3 ($)</td>
<td>24.316.391,06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo N° 4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehículos particulares (veh/día)</td>
<td>4.600</td>
<td></td>
</tr>
<tr>
<td>Vehículos loc. colect. a petróleo (buses/día)</td>
<td>1.255</td>
<td></td>
</tr>
<tr>
<td>Costo social gasolina 93 ($/lt)</td>
<td>88.7</td>
<td></td>
</tr>
<tr>
<td>Costo social diesel ($/lt)</td>
<td>83.32</td>
<td></td>
</tr>
<tr>
<td>Rendimiento vehículos particulares (km/lt)</td>
<td>12.66</td>
<td></td>
</tr>
<tr>
<td>Rendimiento locom. colectiva (km/lt)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Distancia tramo (km)</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. veh. part. (lt)</td>
<td>0.0948</td>
<td></td>
</tr>
<tr>
<td>Consumo unitario comb. loc. col. (lt)</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo gas. 93 veh. part. ($)</td>
<td>14.116.331,75</td>
<td></td>
</tr>
<tr>
<td>Costo anual consumo diesel loc. col. ($)</td>
<td>11.450.042,70</td>
<td></td>
</tr>
<tr>
<td>Costo total combustible tramo 4 ($)</td>
<td>25.566.374,45</td>
<td></td>
</tr>
</tbody>
</table>

Costo total combustible situación sin proyecto ($) 87.544.633

Por otra parte, los consumos de combustible de la situación con proyecto se indican en el cuadro N° 7. El costo total es de $ 86.506.299 para el año 0.
CUADRO N° 7

CALCULO CONSUMO COMBUSTIBLE SITUACION CON PROYECTO

<table>
<thead>
<tr>
<th>Tramo N° 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo social gasolina 93 (S/lt)</td>
<td>88.7</td>
</tr>
<tr>
<td>Costo social diesel (S/lt)</td>
<td>83.32</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE ACTUAL (auto/dia)</td>
<td>2.660</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE CIRCULACIÓN (auto/dia)</td>
<td>1.180</td>
</tr>
<tr>
<td>Viajes diarios en BUSES EJE ACTUAL (auto/dia)</td>
<td>891</td>
</tr>
<tr>
<td>Rendimiento veh. part. eje actual (km/lit)</td>
<td>15.19</td>
</tr>
<tr>
<td>Rendimiento veh. part. circulación (km/lit)</td>
<td>15.94</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos eje actual (km/lit)</td>
<td>4.14</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos circulación (km/lit)</td>
<td>4.22</td>
</tr>
<tr>
<td>Distancia del tramo 1 eje actual (km)</td>
<td>1.02</td>
</tr>
<tr>
<td>Distancia del tramo 1 circulación (km)</td>
<td>1.17</td>
</tr>
<tr>
<td>Consumo veh. part. eje actual (llit/dia)</td>
<td>205.701388552</td>
</tr>
<tr>
<td>Consumo veh. part. circulación (llit/dia)</td>
<td>95.501320761</td>
</tr>
<tr>
<td>Consumo loc. part. eje actual (llit/dia)</td>
<td>170.246374816</td>
</tr>
<tr>
<td>Consumo loc. part. circulación (llit/dia)</td>
<td>82.066550719</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 veh. part. ($)</td>
<td>9.840.931.85</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 loc. coll. ($)</td>
<td>7.673.344.21</td>
</tr>
<tr>
<td>Costo total combustible tramo 1 (S/llit)</td>
<td>17.522.216.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo N° 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo social gasolina 93 (S/lt)</td>
<td>88.7</td>
</tr>
<tr>
<td>Costo social diesel (S/lt)</td>
<td>83.32</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE ACTUAL (auto/dia)</td>
<td>3.430</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE CIRCULACIÓN (auto/dia)</td>
<td>1.470</td>
</tr>
<tr>
<td>Viajes diarios en BUSES EJE ACTUAL (auto/dia)</td>
<td>907</td>
</tr>
<tr>
<td>Viajes diarios en BUSES EJE CIRCULACIÓN (auto/dia)</td>
<td>389</td>
</tr>
<tr>
<td>Rendimiento veh. part. eje actual (km/lit)</td>
<td>12.94</td>
</tr>
<tr>
<td>Rendimiento veh. part. circulación (km/lit)</td>
<td>13.54</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos eje actual (km/lit)</td>
<td>4.08</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos circulación (km/lit)</td>
<td>4.22</td>
</tr>
<tr>
<td>Distancia del tramo 2 eje actual (km)</td>
<td>0.97</td>
</tr>
<tr>
<td>Distancia del tramo 2 circulación (km)</td>
<td>1.07</td>
</tr>
<tr>
<td>Consumo veh. part. eje actual (llit/dia)</td>
<td>255.7921174652</td>
</tr>
<tr>
<td>Consumo veh. part. circulación (llit/dia)</td>
<td>116.130912808</td>
</tr>
<tr>
<td>Consumo loc. part. eje actual (llit/dia)</td>
<td>216.522845177</td>
</tr>
<tr>
<td>Consumo loc. part. circulación (llit/dia)</td>
<td>96.037204128</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 veh. part. ($)</td>
<td>12.042.359.39</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 loc. coll. ($)</td>
<td>9.523.627.21</td>
</tr>
<tr>
<td>Costo total combustible tramo 2 (S/llit)</td>
<td>21.566.996.79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo N° 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo social gasolina 93 (S/lt)</td>
<td>88.7</td>
</tr>
<tr>
<td>Costo social diesel (S/lt)</td>
<td>83.32</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE ACTUAL (auto/dia)</td>
<td>2.320</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE CIRCULACIÓN (auto/dia)</td>
<td>1.080</td>
</tr>
<tr>
<td>Viajes diarios en BUSES EJE ACTUAL (auto/dia)</td>
<td>659</td>
</tr>
<tr>
<td>Viajes diarios en BUSES EJE CIRCULACIÓN (auto/dia)</td>
<td>283</td>
</tr>
<tr>
<td>Rendimiento veh. part. eje actual (km/lit)</td>
<td>12.78</td>
</tr>
<tr>
<td>Rendimiento veh. part. circulación (km/lit)</td>
<td>13.54</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos eje actual (km/lit)</td>
<td>4.08</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos circulación (km/lit)</td>
<td>4.22</td>
</tr>
<tr>
<td>Distancia del tramo 3 eje actual (km)</td>
<td>1.46</td>
</tr>
<tr>
<td>Distancia del tramo 3 circulación (km)</td>
<td>0.98</td>
</tr>
<tr>
<td>Consumo veh. part. eje actual (llit/dia)</td>
<td>287.8773239417</td>
</tr>
<tr>
<td>Consumo veh. part. circulación (llit/dia)</td>
<td>78.1638959569</td>
</tr>
<tr>
<td>Consumo loc. part. eje actual (llit/dia)</td>
<td>238.154546586</td>
</tr>
<tr>
<td>Consumo loc. part. circulación (llit/dia)</td>
<td>65.7203914692</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 veh. part. ($)</td>
<td>11.851.236.77</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 loc. coll. ($)</td>
<td>9.341.350.58</td>
</tr>
<tr>
<td>Costo total combustible tramo 3 (S/llit)</td>
<td>21.992.097.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tramo N° 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo social gasolina 93 (S/lt)</td>
<td>88.7</td>
</tr>
<tr>
<td>Costo social diesel (S/lt)</td>
<td>83.32</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE ACTUAL (auto/dia)</td>
<td>3.220</td>
</tr>
<tr>
<td>Viajes diarios en AUTO EJE CIRCULACIÓN (auto/dia)</td>
<td>1.380</td>
</tr>
<tr>
<td>Viajes diarios en BUSES EJE ACTUAL (auto/dia)</td>
<td>878</td>
</tr>
<tr>
<td>Viajes diarios en BUSES EJE CIRCULACIÓN (auto/dia)</td>
<td>377</td>
</tr>
<tr>
<td>Rendimiento veh. part. eje actual (km/lit)</td>
<td>12.66</td>
</tr>
<tr>
<td>Rendimiento veh. part. circulación (km/lit)</td>
<td>13.54</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos eje actual (km/lit)</td>
<td>4</td>
</tr>
<tr>
<td>Rendimiento loc. colectivos circulación (km/lit)</td>
<td>2.98</td>
</tr>
<tr>
<td>Distancia del tramo 4 eje actual (km)</td>
<td>1.20</td>
</tr>
<tr>
<td>Distancia del tramo 4 circulación (km)</td>
<td>1.18</td>
</tr>
<tr>
<td>Consumo veh. part. eje actual (llit/dia)</td>
<td>305.211205422</td>
</tr>
<tr>
<td>Consumo veh. part. circulación (llit/dia)</td>
<td>120.260787874</td>
</tr>
<tr>
<td>Consumo loc. part. eje actual (llit/dia)</td>
<td>263.4</td>
</tr>
<tr>
<td>Consumo loc. part. circulación (llit/dia)</td>
<td>149.2818791466</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 veh. part. ($)</td>
<td>15.775.100.10</td>
</tr>
<tr>
<td>Costo anual consumo gas 93 veh. coll. ($)</td>
<td>12.550.398.77</td>
</tr>
<tr>
<td>Costo total combustible tramo 4 (S/llit)</td>
<td>36.328.498.92</td>
</tr>
</tbody>
</table>

Costo total combustible con proyecto año $0 (S/llit) 96.506.299

El beneficio por ahorro de consumo de combustible que originaría la ejecución del proyecto, se detalla en el Cuadro N° 8, para cada año del horizonte de evaluación.
CUADRO N° 8
BENEFICIOS POR AHORRO DE COSTO DE COMBUSTIBLE ($)

<table>
<thead>
<tr>
<th>AÑO</th>
<th>COSTO COMBUSTIBLE SIN PROYECTO</th>
<th>COSTO COMBUSTIBLE CON PROYECTO</th>
<th>BENEFICIOS AHORRO COMBUSTIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>89.703.525</td>
<td>88.236.425</td>
<td>1.467.100</td>
</tr>
<tr>
<td>1</td>
<td>91.497.596</td>
<td>90.001.154</td>
<td>1.496.442</td>
</tr>
<tr>
<td>2</td>
<td>93.327.548</td>
<td>91.801.177</td>
<td>1.526.371</td>
</tr>
<tr>
<td>3</td>
<td>95.194.099</td>
<td>93.637.200</td>
<td>1.556.899</td>
</tr>
<tr>
<td>4</td>
<td>97.097.981</td>
<td>95.509.944</td>
<td>1.588.037</td>
</tr>
<tr>
<td>5</td>
<td>99.039.940</td>
<td>97.420.143</td>
<td>1.619.797</td>
</tr>
<tr>
<td>6</td>
<td>101.020.739</td>
<td>99.368.546</td>
<td>1.652.193</td>
</tr>
<tr>
<td>7</td>
<td>103.041.154</td>
<td>101.355.917</td>
<td>1.685.237</td>
</tr>
<tr>
<td>8</td>
<td>105.101.977</td>
<td>103.383.035</td>
<td>1.718.942</td>
</tr>
<tr>
<td>9</td>
<td>107.204.017</td>
<td>105.450.696</td>
<td>1.753.321</td>
</tr>
<tr>
<td>10</td>
<td>109.348.097</td>
<td>107.559.710</td>
<td>1.788.387</td>
</tr>
<tr>
<td>11</td>
<td>111.535.059</td>
<td>109.710.904</td>
<td>1.824.155</td>
</tr>
<tr>
<td>12</td>
<td>113.765.760</td>
<td>111.905.122</td>
<td>1.860.638</td>
</tr>
<tr>
<td>13</td>
<td>116.041.075</td>
<td>114.143.225</td>
<td>1.897.851</td>
</tr>
<tr>
<td>14</td>
<td>118.361.897</td>
<td>116.426.089</td>
<td>1.935.808</td>
</tr>
</tbody>
</table>

5.4.3 Beneficios por ahorro de otros consumos de operación

Estos consumos corresponden a lubricantes, repuestos, mano de obra, neumáticos y depreciación.

Las funciones de costo para los autos particulares y buses, son respectivamente las siguientes:

Costos autos particulares

\[
CTA = 19.259 + 0.252 \times 10^{-2} BI \ (\$/Km)
\]

Costos buses

\[
CTB = 33.086 + 0.344 \times 10^{-2} BI \ (\$/Km)
\]
Aplicando dichas funciones para los dos tipos de vehículos y para cada tramo, se obtuvo los consumos de otros costos de operación. En el Cuadro Nº 9 se indica el correspondiente al año 0 de la situación base, el cual es de $ 295.406.191.

CUADRO Nº 9
COSTOS OTROS CONSUMOS DE OPERACION SIN PROYECTO - AÑO 0

<table>
<thead>
<tr>
<th>TRAMO</th>
<th>AUTOS</th>
<th>BUSES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.507.057</td>
<td>17.214.036</td>
<td>58.721.093</td>
</tr>
<tr>
<td>3</td>
<td>56.285.111</td>
<td>23.516.308</td>
<td>79.801.419</td>
</tr>
<tr>
<td>4</td>
<td>59.112.217</td>
<td>25.750.778</td>
<td>84.862.995</td>
</tr>
<tr>
<td>TOTAL</td>
<td>207.540.639</td>
<td>87.865.552</td>
<td>295.406.191</td>
</tr>
</tbody>
</table>

El Cuadro Nº 10 muestra ese consumo en la situación con proyecto, para el año 0, el que asciende a $ 278.030.964.

CUADRO Nº 10
COSTOS OTROS CONSUMOS DE OPERACION CON PROYECTO - AÑO 0

<table>
<thead>
<tr>
<th>TRAMO</th>
<th>AUTOS</th>
<th>BUSES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.884.592</td>
<td>17.103.543</td>
<td>57.988.135</td>
</tr>
<tr>
<td>2</td>
<td>49.395.640</td>
<td>21.037.594</td>
<td>70.433.234</td>
</tr>
<tr>
<td>3</td>
<td>48.786.670</td>
<td>20.497.152</td>
<td>69.283.822</td>
</tr>
<tr>
<td>4</td>
<td>55.821.051</td>
<td>24.504.720</td>
<td>80.325.772</td>
</tr>
<tr>
<td>TOTAL</td>
<td>194.887.954</td>
<td>83.143.010</td>
<td>278.030.964</td>
</tr>
</tbody>
</table>

Los beneficios por este concepto, para cada uno de los años del proyecto se detallan en el Cuadro Nº 11.
CUADRO N° 11
BENEFICIOS POR AHORRO DE OTROS COSTOS DE OPERACION

<table>
<thead>
<tr>
<th>AÑO</th>
<th>OTROS CONSUMOS DE OPERACION SIN PROYECTO</th>
<th>OTROS CONSUMOS DE OPERACION CON PROYECTO</th>
<th>BENEFICIOS OTROS CONSUMOS DE OPERACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>301.314.315</td>
<td>283.591.583</td>
<td>17.722.732</td>
</tr>
<tr>
<td>1</td>
<td>307.340.601</td>
<td>289.263.414</td>
<td>18.077.187</td>
</tr>
<tr>
<td>2</td>
<td>313.487.413</td>
<td>295.048.683</td>
<td>18.438.730</td>
</tr>
<tr>
<td>3</td>
<td>319.757.161</td>
<td>300.949.656</td>
<td>18.807.505</td>
</tr>
<tr>
<td>4</td>
<td>326.152.304</td>
<td>306.968.650</td>
<td>19.183.655</td>
</tr>
<tr>
<td>5</td>
<td>332.675.351</td>
<td>313.108.022</td>
<td>19.567.328</td>
</tr>
<tr>
<td>6</td>
<td>339.328.858</td>
<td>319.370.183</td>
<td>19.958.675</td>
</tr>
<tr>
<td>7</td>
<td>346.115.435</td>
<td>325.757.587</td>
<td>20.357.848</td>
</tr>
<tr>
<td>8</td>
<td>353.037.743</td>
<td>332.272.738</td>
<td>20.765.005</td>
</tr>
<tr>
<td>9</td>
<td>360.098.498</td>
<td>338.918.193</td>
<td>21.180.305</td>
</tr>
<tr>
<td>10</td>
<td>367.300.468</td>
<td>345.696.557</td>
<td>21.603.911</td>
</tr>
<tr>
<td>11</td>
<td>374.646.478</td>
<td>352.610.488</td>
<td>22.035.989</td>
</tr>
<tr>
<td>12</td>
<td>382.139.407</td>
<td>359.662.698</td>
<td>22.476.709</td>
</tr>
<tr>
<td>13</td>
<td>389.782.195</td>
<td>366.855.952</td>
<td>22.926.243</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>374.193.071</td>
<td>23.384.768</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.5 Evaluación del proyecto

Con la información de costos y beneficios obtenida, se evaluó socialmente la construcción de la avenida circunvalación de Tocopilla.

Se consideró un horizonte de evaluación de 15 años y se aplicó una tasa social de descuento del 12%.

Los resultados obtenidos se detallan en el Cuadro Nº 12, obteniéndose los siguientes indicadores de rentabilidad:

\[
\text{VAN (12\%) = S 362.797.665} \\
\text{TIR = 37,73 \%}
\]
En virtud de los excelentes indicadores obtenidos, no se estimó necesario realizar análisis de sensibilidad a las variables que presentan mayor incertidumbre.
<table>
<thead>
<tr>
<th>AÑO</th>
<th>Inversión Social Slt. Base Optimizado ($)</th>
<th>Inversión Social Slt. con Proyecto</th>
<th>Inversión Social Neta ($)</th>
<th>Costos Conser. Sin Proyecto ($)</th>
<th>Costos Conser. Con Proyecto ($)</th>
<th>Beneficios Por Ahorro Conser. ($)</th>
<th>Beneficio Ahorro Tiempo ($)</th>
<th>Beneficio Ahorro Combustible ($)</th>
<th>Beneficio Otros Cons. Oper. ($)</th>
<th>Flujo Proyecto ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>59.982.540</td>
<td>1.556.899</td>
<td>19.183.655</td>
<td>82.292.142</td>
<td>84.931.220</td>
<td>85.603.079</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>61.182.191</td>
<td>1.588.037</td>
<td>19.567.328</td>
<td>84.603.079</td>
<td>86.292.142</td>
<td>87.308.376</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>62.405.835</td>
<td>1.619.797</td>
<td>19.958.675</td>
<td>86.308.376</td>
<td>88.603.079</td>
<td>89.308.778</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>63.653.951</td>
<td>1.652.193</td>
<td>19.310.325</td>
<td>88.308.778</td>
<td>89.947.778</td>
<td>90.821.968</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>64.927.030</td>
<td>1.685.237</td>
<td>20.357.848</td>
<td>90.821.968</td>
<td>92.861.042</td>
<td>93.603.295</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>68.901.084</td>
<td>1.788.387</td>
<td>21.603.911</td>
<td>98.260.736</td>
<td>100.239.585</td>
<td>100.239.585</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>70.279.106</td>
<td>1.824.155</td>
<td>22.035.989</td>
<td>100.239.585</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>71.684.888</td>
<td>1.860.638</td>
<td>22.476.709</td>
<td>100.239.585</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>73.118.382</td>
<td>1.897.851</td>
<td>22.926.243</td>
<td>100.239.585</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6.156.414</td>
<td>5.818.154</td>
<td>338.260.</td>
<td>74.580.749</td>
<td>1.935.808</td>
<td>23.384.768</td>
<td>100.239.585</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VAN (12 %) = $ 362.797.665
TIR = 37.73%