PRODUCTIVIDAD TOTAL DE FACTORES:

REVISIÓN METODOLÓGICA
Y UNA APLICACIÓN
AL SECTOR MANUFACTURERO URUGUAYO
PRODUCTIVIDAD TOTAL DE FACTORES:
REVISIÓN METODOLÓGICA
Y UNA APLICACIÓN AL SECTOR MANUFACTURERO URUGUAYO

El presente documento ha sido elaborado por Gabriel Arimón, con la colaboración de Mariella Torello, Consultores de la Oficina de CEPAL en Montevideo. Las opiniones expresadas en este documento son de exclusiva responsabilidad de los autores y pueden no coincidir con las de la Organización.
RESUMEN

El efecto de los cambios estructurales a los que ha sido sometida la economía uruguaya en las últimas dos décadas no ha sido evaluado en toda su dimensión. Si bien, la reciente discusión sobre si el país asiste a un proceso de desindustrialización que compromete su senda de crecimiento o si, por el contrario se trata de un proceso de reestructuración productiva en una trayectoria hacia el alcance de mayores niveles de eficiencia, tiene su correlato a nivel académico, son escasos los estudios empíricos a nivel local.

Una de las variables que resume en gran parte los efectos de las reformas estructurales es la evolución en el nivel de eficiencia con la que se realiza la producción. En términos generales el nivel de eficiencia o de productividad global tiene que ver tanto con la explicitación de las ventajas comparativas como con el ritmo de incorporación de progreso técnico o la desaparición de conductas no optimizadoras en la economía. Sin embargo, cada uno de estos fenómenos se vincula a nociones de eficiencia diferentes: eficiencia asignativa, eficiencia técnica y progreso técnico.

Un obligado comienzo para el estudio empírico de esta temática en el país es contar con estimaciones de los cambios en la productividad global o productividad total de factores (PTF). Para ello, en el presente trabajo, se sistematizan primero las distintas aproximaciones al tema agrupándolas en aquellas que se formulan en el marco de la teoría económica y las que se formulan en el contexto de la teoría de los números índices. En el primer enfoque se parte del concepto de función de producción bajo los supuestos neoclásicos -rendimientos constantes a escala y conductas optimizadoras- en el que su estimación econométrica provee los parámetros estructurales que permiten el cálculo de la PTF como un residuo entre el cambio operado en el producto y en los insumos. En el segundo enfoque el conocimiento de los parámetros estructurales no es necesario y el cálculo de la PTF se realiza a través de números índices que agregan en forma adecuada la producción de distintos bienes y los insumos necesarios para producirlas.

El trabajo finaliza con el cálculo de uno de los indicadores posibles de estimar a partir de los datos disponibles para el sector industrial uruguayo a nivel agregado y por agrupamientos según especialización comercial. Dicho indicador es el índice de Törnqvist. Se realizan dos estimaciones diferentes: una considerando capital y trabajo, y otra incorporando además los insumos intermedios, las cuales se comparan con el índice de productividad parcial del trabajo.

Los resultados del cálculo de los diversos índices muestran crecimiento de la productividad en el período 1982-92. El importante crecimiento de la productividad aparente del trabajo en el período (24.5%) se ve relativizada cuando se considera el valor agregado por persona ocupada (10%) y más aún cuando se mide la productividad global considerando tres factores (3.6%). La principal diferencia entre los distintos índices se produce a partir de 1987 debido a un importante cambio en la relación valor agregado/consumo intermedio, el inicio de la caída del empleo y cierta estabilización en el nivel del stock de capital. De esta forma el período 1987-90 muestra una relativa pérdida de eficiencia en la producción industrial. Los dos últimos años del período considerado reflejan una mejora en la productividad, lo cual sugiere que este proceso haya continuado en los años recientes, considerando que en dichos años se asiste a un crecimiento del valor agregado y del stock de capital.
I. INTRODUCCIÓN

A. REFORMAS ESTRUCTURALES Y EFICIENCIA

El efecto de los cambios estructurales a los que ha sido sometida la economía uruguaya en las últimas dos décadas no ha sido evaluado en toda su dimensión. Se posee, por una parte, un conocimiento muy fragmentario y no sistemático de las consecuencias que han tenido a nivel microeconómico y por otra, se desconocen las potencialidades que han generado o comprometido en el crecimiento sectorial de largo plazo. En particular, es importante señalar el desconocimiento sobre si el proceso de apertura ha dado lo que sus fundamentos teóricos auguraron: si ha determinado una mejor asignación de recursos en términos estáticos; si ha generado, además, beneficios dinámicos por vía de una mayor permeabilidad al aprendizaje y a la introducción de cambios tecnológicos; si se ha adquirido mayor flexibilidad para enfrentar choques externos; y, por último, si ha reducido los comportamientos tipo rent-seeking.

Si bien, la reciente discusión sobre si el país asiste a un proceso de desindustrialización que compromete su senda de crecimiento o si, por el contrario, se trata de un proceso de reestructuración productiva en una trayectoria hacia mayores niveles de eficiencia, tiene su correlato a nivel académico, son escasos los estudios empíricos a nivel local.

En ámbitos académicos las dudas sobre los logros de las reformas se plantean con mayor o menor énfasis y desde diferentes aproximaciones teóricas. Para Katz (1995) "... Los programas de estabilización macroeconómica y reforma estructural conllevan un cierto componente de "selección natural" que necesariamente acaba expresándose como un proceso de "creación destructiva" de naturaleza schumpeteriana en el cual los tramos más débiles del tejido productivo doméstico necesariamente tienden a perder participación relativa en la comunidad y eventualmente a desaparecer. No es obvio, sin embargo que dicho proceso de "selección natural" necesariamente permita subsistir a aquellos "genotipos" sociales (Nelson, 1994) que en el largo plazo aseguren un patrón más adecuado de crecimiento. No son pocos los casos en los que la sobrevivencia de largo plazo ha estado asociada a capacidad de lobby y a circunstancias políticas que poco tienen que ver con los esfuerzos de modernización y de upgrading llevados a cabo por los agentes económicos individuales."

Rodrik (1993) en la misma línea concluye "pocos no estarían de acuerdo con la proposición que fijar precios sistemática y significativamente equivocados, en la forma que lo han hecho los países que han seguido políticas de sustitución de importaciones ha sido un error costoso. Pero pocos también no estarán de acuerdo que fijar precios correctamente es insuficiente para que países como Bolivia y Ghana alcancen las tasas de crecimiento de Corea." Yendo aún más lejos afirma "...los beneficios de la reforma de precios permanecen pequeños en relación a los objetivos de desarrollo, y tienden a vincularse con el crecimiento económico a través de canales inciertos e imaginarios."

1/ En este punto se sigue la distinción de los cuatro argumentos básicos de Rodrik (1993) en favor de las reformas de política "market-oriented".
Una de las variables que resume en gran parte los efectos de las reformas estructurales es la evolución en el nivel de eficiencia con la que se realiza la producción. En términos generales, el nivel de eficiencia o de productividad global tiene que ver tanto con la explicitación de las ventajas comparativas como con el ritmo de incorporación de progreso técnico o la desaparición de conductas no optimizadoras. Sin embargo, cada uno de estos fenómenos se vincula a nociones de eficiencia diferentes: eficiencia asignativa, eficiencia técnica y progreso técnico.

Así, se afirma que uno de los efectos que la apertura determina, es el desplazamiento de los recursos hacia los sectores en los cuales son más productivos. Esto hace que el conjunto de la estructura productiva se torne más eficiente al adecuarse a las ventajas comparativas en sentido ricardiano. Es ésta una noción estática, usualmente representada por los conocidos triángulos de Haberger. A este fenómeno se lo denomina ganancia de eficiencia asignativa.

La noción de eficiencia técnica, en cambio, tiene que ver con los niveles óptimos de producción ya sea desde el punto de vista de la escala como del uso de los factores. De este modo a diferencia de la eficiencia asignativa, una mayor eficiencia técnica incrementa la eficiencia con la cual se producen cada una de las unidades.

La escala de producción óptima desde el punto de vista técnico se alcanza cuando se produce con rendimientos constantes. La presencia de rendimientos crecientes a escala se puede explicar por la existencia de un factor de producción fijo que resulta subutilizado cuando la escala de producción es pequeña por lo que un incremento de la misma permite mejorar la eficiencia. Las ganancias de eficiencia por esta vía son llamadas ganancias en la eficiencia de escala.

Con respecto a esta última, se sostiene que las economías más abiertas permiten disminuir costos de producción dado que las firmas domésticas pueden alcanzar mayores niveles de producto participando en los mercados mundiales. La expansión de sectores y firmas con retornos crecientes a escala determina que la asignación de recursos convencional se beneficie del aumento en la productividad por esta vía. En segundo lugar, se argumenta que la apertura genera beneficios dado que un mercado protegido y con bajas barreras a la entrada conduce a la existencia de un número excesivo de firmas, todas operando a una escala ineficiente.

Por su parte, la llamada ineficiencia X refiere a un comportamiento no optimizador por parte de las empresas que implica un desperdicio de factores de producción. Este tipo de fenómeno se expresa por la existencia de empresas que operan por debajo de la frontera de producción. Incluye la idea de un insuficiente esfuerzo gerencial, esfuerzo considerado responsable de la mejora en la eficiencia de toda la organización. A este respecto el argumento es que en mercados protegidos se debilita el incentivo de procurar mejoras en la

\[2/\] Algunos autores utilizan el término de eficiencia técnica para referirse únicamente a la eficiencia X. El término es utilizado en este trabajo para englobar, además, la eficiencia de escala.

\[3/\] Un análisis más detallado de los argumentos teóricos que relacionan apertura y eficiencia técnica se puede encontrar en I. Marshall "Liberalización comercial en Chile y su impacto sobre la eficiencia técnica industrial: 1971-1986".
productividad dada la débil amenaza de la competencia externa. La protección incrementa las rentas de los empresarios, los que transforman parte de su ingreso en ocio en vez de procurar la eliminación de las ineficiencias en su organización. El razonamiento anterior supone una oferta de esfuerzo gerencial atípica, en la cual a mayor renta menor esfuerzo. Dado que todo el esfuerzo declina, la eficiencia técnica se ubica en una senda inferior.

Los conocimientos técnicos especializados (know-how) y la tecnología usada en el proceso de producción también forman parte de la noción de eficiencia técnica. El progreso técnico, como señala Jones (1974), tiene varios significados: a) que puedan producirse más bienes con las mismas cantidades de factores, b) que mejore la calidad de los productos ya existentes y c) que se produzcan bienes nuevos. Generalmente se asume el primer significado, el que se representa gráficamente por un desplazamiento hacia arriba de la función de producción.

En relación a este concepto, se afirma que el proceso de innovación tecnológica se acelera mediante la apertura de la economía a los mercados internacionales. La mayor presión competitiva, induce a las empresas a mejorar sus procesos de producción y/o a mejorar la calidad de sus productos. Por otra parte, los menores obstáculos al comercio disminuyen el costo de importación de la maquinaria nueva, de los servicios o de otros insumos que se requieran. También la mayor apertura a la inversión extranjera directa puede facilitar la transferencia de tecnología y know-how al país receptor, incluyendo la calificación de los recursos humanos. En la medida que la frontera de producción del país se desplace hacia la frontera de las mejores prácticas internacionales se da el llamado fenómeno de catch-up tecnológico.

La mayoría de los estudios disponibles a nivel comparado -de los que Uruguay ha estado ausente- arrojan resultados contradictorios en términos de cambios en la eficiencia y en el ritmo de incorporación de innovaciones tecnológicas por parte de las empresas, alimentando la ambigüedad que caracteriza a las evaluaciones de las consecuencias de las reformas sobre la estructura productiva. En este sentido, el presente trabajo pretende ser un comienzo para el estudio empírico de esta temática en el país.

El trabajo se estructura discutiendo en primer lugar los diferentes conceptos de productividad, para luego considerar dos aproximaciones distintas al tema de la productividad total de factores, una desarrollada en el marco de la teoría del crecimiento y la otra dentro de la teoría de los números índices. A partir de este último marco de estimación se realiza una aplicación simple de uno de los indicadores que es posible estimar a partir de los datos agregados disponibles para la industria manufacturer uruguaya: el índice de productividad total de factores de Tornqvist. Dicho índice se calcula para el conjunto del sector industrial y para los seis subsectores identificados según "especialización" de la rama.

La estimación a partir de mediciones más complejas, como algunas de las que se exponen en el texto, requiere de información a nivel micro difícilmente accesible en el país y de técnicas cuya utilización excedía los alcances de una primera aproximación como la planteada.
B. LA PRODUCTIVIDAD. DEFINICIÓN DE CONCEPTOS

El concepto de productividad refiere a la eficiencia productiva con que es utilizada una unidad de factor o insumo, implica por tanto un cociente entre lo producido y lo insumido. Si una empresa produce sólo un producto y utiliza un único insumo durante cada período, resulta sencillo definir el cambio de la productividad entre 2 períodos. Siendo y, x las cantidades de producto e insumo, respectivamente, la productividad es y/x y el índice de crecimiento de la misma puede definirse como:

\[I(x', y') = \frac{y'/y}{x'/x} \]

(1)

de un insumo, se pueden definir dos tipos de índices de productividad: los índices de productividad parcial (o aparente) de cada factor utilizado en la producción y el índice de productividad total de factores (PTF) o productividad multifactor. Los primeros son un simple promedio del producto sobre la cantidad utilizada del factor mientras que la PTF es el producto por "unidad" de insumo agregado.

La generalización de esta idea al caso de empresas que producen más de un producto y utilizan más de un insumo, implica reemplazar el ratio \(y'/y \) por un índice de cantidad del producto, \(Q(p', p''', y', y''') \), y reemplazar el ratio \(x'/x \) por un índice de cantidad de insumos, \(O(w', w''', x', x''') \), donde y', x' son ahora vectores de las cantidades de productos e insumos, y p', w' son los vectores de precios de los productos e insumos respectivamente.

Resulta, por tanto, necesaria para la construcción de un indicador de productividad, la especificación de los índices de cantidad que se van a utilizar. La discusión sobre la mejor forma que deben adoptar conduce a determinar cuál es la mejor especificación de agregación de insumos y productos para "medir" los cambios en la productividad.

En definitiva, establecer un indicador de cambio en la productividad total de factores en presencia de varios productos e insumos implica básicamente resolver problemas de agregación. Si, en el contexto de la teoría económica, se parte del concepto de función de producción neoclásica -rendimientos constantes a escala y conductas optimizadoras- la estimación econometrica provee los parámetros estructurales (las elasticidades producto de los factores) lo que permite la agregación de los factores de producción y por ende la determinación de la PTF como un residuo entre el cambio operado en el producto y en los insumos. Este es el denominado residuo A(t) tan familiar a la teoría del crecimiento de cuño neoclásico el que, dado los supuestos de partida, sólo puede asociarse al cambio técnico.

Medir los cambios en la PTF en el contexto de la teoría de los números índices provee una aproximación a la agregación de los factores de producción sin que el conocimiento de los parámetros estructurales sea necesario. La noción de índice exacto de Diewert establece un puente entre ambas aproximaciones al vincular la formulación de determinados índices a formas funcionales determinadas. De este modo, como se desarrollará más adelante, la función de producción translog homogénea responde a un índice de Tornqvist en tanto que la relación subyacente entre los factores de producción del índice ideal de Fischer es una función cuadrática.
II. LA TEORÍA ECONÓMICA Y LA PTF

A. LA TEORÍA DEL CRECIMIENTO Y LA PTF

En los modelos *simples* de la teoría del crecimiento, como el de Harrod-Domar (1939, 1946) y el de Solow (1956), el crecimiento de la producción agregada es explicado únicamente por los incrementos en las cantidades utilizadas de los factores de producción. Estos modelos ponen entonces el acento en la acumulación de los factores olvidando la relevancia del progreso tecnológico en la explicación del crecimiento. Esta carencia llevó al desarrollo de modelos que tomaran en cuenta la existencia del progreso técnico. La forma más sencilla fue incorporarlo como una variable exógena al sistema económico, eludiendo la explicación de sus determinantes.

Solow (1957) parte de suponer que el progreso técnico es neutral en el sentido de Hicks (lo que implica que incrementa por igual la eficiencia del capital y del trabajo) y es no incorporado. De aquí que la función de producción se pueda escribir como:

\[y^t = A(t)f(x_k^t, x_l^t) \]

donde \(y, x_k \) y \(x_l \) representan el producto, el capital y el trabajo respectivamente, y \(A(t) \) representa el progreso técnico. Derivando (2) respecto al tiempo y dividiendo entre \(y \), obtenemos

\[\frac{\dot{y}}{y} = \frac{\dot{A}}{A} f(x_k^t, x_l^t) + \frac{\partial f}{\partial x_k} \frac{\dot{x}_k}{y} + \frac{\partial f}{\partial x_l} \frac{\dot{x}_l}{y} \]

Añadiendo las hipótesis de que los factores son remunerados por el valor de su producto marginal, \(w_i = p(\frac{\partial y}{\partial x_i}) \) donde \(w_i \) representa la remuneración al factor \(i \), podemos escribir (3) como:

4/ La exposición del trabajo de Solow se basa en la presentación de Wallis en su libro "Temas de econometría aplicada" (páginas 66 a 71).

5/ El cambio técnico se clasifica en ahorrador de trabajo, ahorrador de capital y neutral según su efecto sobre las participaciones relativas de los factores en el ingreso. Se han propuesto 3 clasificaciones: i) La de Hicks mide las participaciones relativas para un ratio capital-trabajo constante, ii) Harrod propone medirla para un ratio capital-producto constante y iii) Solow plantea considerar el ratio trabajo-producto constante.

6/ Se considera progreso técnico "no incorporado" a aquellas mejoras que afectan por igual a todas las unidades de los factores existentes. Sin embargo existen muchos casos en que la nueva tecnología afecta solamente a las nuevas unidades de los factores, en cuyo caso se habla de progreso técnico "incorporado".
Definiendo \(s_K \) y \(s_L \) como las participaciones en el ingreso del capital y el trabajo respectivamente, podemos reescribir la ecuación (4) como:

\[
\frac{\dot{y}}{y} = \frac{\dot{A}}{A} + \frac{w_K x_K \dot{x}_K}{p y x_K} + \frac{w_L x_L \dot{x}_L}{p y x_L}
\]

(4)

Suponiendo además rendimientos constantes a escala, según el Teorema de Euler \(s_K + s_K = 1 \), podemos entonces transformar \(y y x_K \) en variables por hora-hombre, \(q = y / x_L \) y \(k = x_K / x_L \). Las variaciones en las variables por hora-hombre pueden escribirse como \(\dot{q} / q = \dot{y} / y - \dot{x}_L / x_L \) y

\[
\frac{\dot{q}}{q} = \frac{\dot{x}_K / x_K - \dot{x}_L / x_L}{k}
\]

(6)

Podemos explicar entonces los cambios en el producto por hora-hombre como la suma de la tasa de crecimiento del capital por hora-hombre ponderada por la participación del capital en el ingreso, más la tasa de progreso técnico.

Utilizando las primeras diferencias de datos anuales como aproximación a la derivada continua, Solow estima la serie de cambio tecnológico \(A(t) \). Sus resultados llamaron la atención sobre la importancia de este factor al que pasó a denominárselo "residuo" pues se obtenía por diferencia. En la explicación del crecimiento del producto en Estados Unidos, en los 40 años que abarca su estudio, obtuvo que el 90% del incremento en la producción por hora-hombre se explicaba por este factor. Aunque, como el propio Solow reconoció, esta medida es una especie de "cajón de sastre" que recoge cualquier clase de desplazamiento de la función de producción.

Este factor "residual" es una medición de la PTF. Como se aprecia en la ecuación (5) el residuo es igual a la diferencia entre la tasa de crecimiento del producto menos la tasa de crecimiento de los insumos, obtenida como un promedio ponderado de las tasas de crecimiento de ambos factores. En este modelo simplificado la variación en la PTF sólo puede ser explicada por el progreso técnico dado los supuestos que conciernen a la función de producción de la que se parte. Por lo tanto, no existen economías de escala ni ineficiencias técnicas de ningún tipo en la producción.
La principal crítica a esta metodología se centró en la validez de la agregación de los factores, capital y trabajo. La misma se fundamentó en que los agregados no se componen de unidades homogéneas y maleables, sino que son agregados de unidades heterogéneas.

Como plantea Nadiri (1970) la condición necesaria y suficiente para agrupar los distintos bienes de capital en un agregado consistente es que la tasa de sustitución entre los diferentes tipos de bienes de capital sea independiente de la cantidad de trabajo combinada con ellos. En segundo lugar, para que el agregado sea una simple suma de los diferentes elementos del grupo, la tasa marginal de sustitución entre dos tipos cualesquiera de capital debe ser constante. La primera condición es conocida como el teorema de separabilidad funcional de Leontief.

1. La aproximación contable

La metodología de Solow puede ser generalizada para un número arbitrario de categorías de insumos permitiendo, al trabajar con agrupamientos más homogéneos, reducir el número de supuestos restrictivos necesarios causados por el mayor nivel de agregación.

\[
\frac{\Delta T}{A} = \frac{\Delta y}{y} - \sum_{j=1}^{N} s_j \frac{\Delta x_j}{x_j}
\]

Jorgenson y Griliches (1967) plantean una metodología similar para el caso de varios productos y varios insumos. Adoptan los supuestos neoclásicos usuales de competencia: una función de producción de retornos constantes a escala y equilibrio de los productores (precio de los factores igual a productividad marginal y tasas de sustitución marginal de bienes igual a sus precios relativos). Estos autores parten de la identidad contable básica del ingreso nacional:

\[
\sum_{i=1}^{M} p_i y_i = \sum_{j=1}^{N} w_j x_j
\]

y definen la productividad total de factores como el cociente entre la cantidad total de productos obtenidos y la cantidad total de insumos utilizados, \(PTF = \frac{y}{x}\), entonces \(dPTF/PTF = (dy/y) - (dx/x)\).

Para la agregación de insumos y productos recurren a los llamados índices de Divisia. La aproximación de este índice, parte de considerar los precios y las cantidades como funciones continuas del tiempo: Definiendo el ingreso \(Y(t)\) como:
\(Y(t) = \sum_{i=1}^{M} p_i(t) y_i(t) \)

Si diferenciamos (11) y dividimos entre \(Y(t) \), obtenemos:

\(\frac{\dot{Y}(t)}{Y(t)} = \sum_{i=1}^{M} \frac{p_i(t) \dot{y}_i(t)}{p(t) y(t)} + \sum_{i=1}^{M} \frac{\dot{p}_i(t) y_i(t)}{p(t) y(t)} \)

El índice de Divisia plantea que una definición apropiada de los índices de precios \(P(t) \) y cantidades \(Q(t) \), debe cumplir que \(Y(t) = P(t)Q(t) \). Por tanto diferenciando respecto al tiempo y dividiendo entre \(Y(t) \), obtenemos

\(\frac{\dot{Y}(t)}{Y(t)} = \frac{Q(t) \dot{P}(t) + P(t) \dot{Q}(t)}{P(t)Q(t)} = \frac{\dot{P}(t)}{P(t)} \cdot \frac{\dot{Q}(t)}{Q(t)} \)

Igualando ambas ecuaciones, los índices de cantidad y precios son, respectivamente, las soluciones de las siguientes ecuaciones diferenciales:

\(\frac{\dot{Q}(t)}{Q(t)} = \sum_{i=1}^{M} \frac{p_i(t) \dot{y}_i(t)}{p(t) y(t)} = \sum_{i=1}^{M} v_i(t) \frac{\dot{y}_i(t)}{y_i(t)} \)

\(\frac{\dot{P}(t)}{P(t)} = \sum_{i=1}^{M} \frac{\dot{p}_i(t) y_i(t)}{p(t) y(t)} = \sum_{i=1}^{M} v_i(t) \frac{\dot{p}_i(t)}{p_i(t)} \)

siendo \(v_i(t) = \frac{y_i(t)p_i(t)}{y(t)p(t)} \).

De este modo, Jorgenson y Griliches utilizan, tanto para insumos como para productos los índices Divisia de cantidades, de acuerdo a las especificaciones de la ecuación (14).

\(\frac{\dot{A}}{A} = \sum_{i=1}^{M} v_i(t) \frac{\dot{y}_i(t)}{y_i(t)} - \sum_{j=1}^{N} s_j(t) \frac{\dot{x}_j(t)}{x_j(t)} \)

los ponderadores \(v_i \) y \(s_j \) representan las participaciones del producto \(i \) y del insumo \(j \) en el valor total de los producto y de los insumos, respectivamente. La tasa de crecimiento de la productividad global es entonces definida como la diferencia entre la tasa de crecimiento del producto real y la tasa de crecimiento de los insumos reales, cada uno de estos términos medido como un promedio ponderado de las tasas de crecimiento de productos e insumos individuales.

Dado que las observaciones de precios y cantidades no son continuas el índice de Divisia debe aproximarse usando observaciones discretas. Varias especificaciones distintas pueden ser consideradas aproximaciones discretas a dicho indicador, con la sola condición que
para que sean aproximaciones válidas los períodos comparados deben implicar un intervalo corto de tiempo.

2. Los cambios de calidad de los insumos

Como se ha planteado anteriormente el crecimiento en la PTF puede ser explicado, entre otros factores, por el progreso técnico. Este progreso puede ser no incorporado, como lo supone Solow, o incorporado en los factores de producción. Una forma de distinguir cuánto del crecimiento en la PTF es debido al progreso técnico incorporado es construir índices de calidad de los factores. Si suponemos que la cantidad de un insumo lo podemos expresar en unidades de eficiencia, como \(X = cx \) donde \(x \) son las unidades "físicas" del insumo y \(c \) refleja la eficiencia de cada unidad en el momento \(t \), el crecimiento en la cantidad de un insumo lo podemos expresar como:

\[
\frac{\dot{X}}{X} = \frac{\dot{c}x + c\dot{x}}{cx} = \frac{\dot{c}}{c} + \frac{\dot{x}}{x}
\]

es decir, como el crecimiento en las unidades físicas del insumo más el incremento en el índice de calidad del mismo. Por tanto, podemos calcular el crecimiento en la PTF debido al progreso técnico autónomo como la diferencia entre el crecimiento del producto y el crecimiento de los insumos medidos en unidades de eficiencia.

\[
\frac{\Delta}{A} = \frac{\dot{y}}{y} - \sum_{i=1}^{N} \frac{\dot{s}_i}{s_i} \frac{x_i}{x} = \frac{\dot{y}}{y} - \sum_{i=1}^{N} s_i \left(\frac{\dot{c}_i}{c_i} + \frac{\dot{x}_i}{x_i} \right)
\]

El crecimiento de la PTF queda entonces desagregado en dos componentes: uno que refleja el crecimiento debido al progreso técnico "autónomo", \(A/A \), y otro que representa el crecimiento explicado por el progreso técnico "incorporado" (o mejora en la calidad). De este modo el progreso técnico autónomo reflejaría mejoras en la gestión, en la organización de los recursos, etc., no atribuibles a ningún factor en particular.

\[
\frac{PTF}{PTF} = \frac{\dot{A}}{A} + \sum_{i=1}^{N} s_i \frac{\dot{c}_i}{c_i} = \frac{\dot{y}}{y} - \sum_{i=1}^{N} s_i \frac{\dot{x}_i}{x}
\]

La relación entre capital y progreso técnico incorporado es establecida en los llamados "modelos de generaciones", que plantean que la nueva tecnología está incorporada en los nuevos bienes de capital. Solow (1960) desarrolla un modelo suponiendo que las máquinas de una misma generación son idénticas, que las de las últimas generaciones son más productivas por un factor exponencial constante que aquéllas de generaciones precedentes y que la tasa de sustitución entre máquinas de diferente generación es independiente de otros insumos (por tanto se pueden agregar los distintos bienes de capital).

No todo el cambio técnico está incorporado en los bienes de capital. Parte debe transmitirse a través de cambios en las características de la fuerza de trabajo. Esta aproximación ha sido destacada por Denison, Griliches y Kendrick. Estos autores formulan
índices separados para cada tipo de trabajo y miden su contribución al crecimiento del producto separadamente. Corrigen la cantidad de horas-hombre agregada según varias características medibles de la fuerza de trabajo. Denison (1962) identifica la composición por sexo y edad, y la educación como los principales factores que afectan la calidad de la mano de obra. Los ingresos relativos de estos sub-grupos son utilizados como medidas de su productividad marginal y, por tanto, se usan como ponderadores al construir la serie agregada de trabajo.

B. EL ALEJAMIENTO DE LOS SUPUESTOS NEOCLÁSICOS

Consideremos una función de producción homogénea (es decir con rendimientos constantes a escala) agregada, y doblemente diferenciable: \(y = A f(x) \), donde \(A \) es la medida del progreso técnico no incorporado. Diferenciando respecto al tiempo y dividiendo por \(y \), obtenemos:

\[
\frac{\dot{A}}{A} = \frac{\dot{y}}{y} - \sum_{i=1}^{N} \theta_i \frac{\dot{x}_i}{x_i}
\]

donde \(\theta_i = \frac{\partial y / \partial x_i}{y/x_i} \), es la elasticidad del producto respecto al i-ésimo factor. Suponiendo que los factores son pagados por el valor de su producto marginal, se puede reemplazar la elasticidad producto por la participación del factor \(s_i \), por tanto la estimación del cambio en la PTF es:

\[
\frac{\dot{PTF}}{PTF} = \frac{\dot{A}}{A} = \frac{\dot{y}}{y} - \sum_{i=1}^{N} s_i \frac{\dot{x}_i}{x_i}
\]

Esta aproximación requiere los siguientes 4 supuestos: a) retornos constantes a escala, b) todos los factores se ajustan libremente para maximizar beneficios, c) los mercados son competitivos y d) todas las plantas emplean idéntica tecnología. En ausencia de estos supuestos el cálculo de la PTF presenta algunas dificultades y, por otra parte, su identificación con el progreso técnico deja de ser válida. Tybout (1991) analiza algunos de los problemas que plantea la ausencia de los supuestos convencionales y describe a su vez posibles correcciones.

1. La ausencia de retornos constantes a escala

Si los retornos son crecientes o decrecientes a escala, la elasticidad del producto respecto a los factores no puede inferirse directamente de la participación de los factores en el costo. Es decir \(\theta_k,1 \neq s_k,1 \). Por tanto si en presencia de economías de escala, se estima utilizando la ecuación anterior, los cambios en la PTF quedan expresados como:
(22) \[\frac{\dot{P}\hat{T}F}{P\hat{T}F} = \frac{A}{\bar{A}} + \sum_{i=1}^{N} (\theta_i - s_i) \frac{\dot{x_i}}{x_i} \]

donducta la mediación del cambio en la PTF ya no coincide con el progreso técnico, \(\frac{A}{\bar{A}}\). En el segundo miembro aparece un término que refleja los cambios en la productividad por el efecto de las economías de escala\(^7\)/.

Para poder aislar el progreso técnico es necesario el conocimiento de los retornos a escala, por ejemplo el conocimiento de las elasticidades producto individuales de los factores \(\theta_i\) permite esa desagregación usando la ecuación (22)\(^8\). Al ser estos, parámetros no observables de la función de producción su estimación se puede hacer a través de métodos econométricos.

2. La ausencia del libre ajuste de los factores

La presencia de costos de ajuste determina que el nivel de capital deseado, y por lo tanto la inversión, no reaccionen en forma inmediata a los cambios en el ciclo económico. Dado que tanto la incorporación de nuevo capital como la remoción del viejo entraña costos para las empresas (entrenamiento de trabajadores, costos de búsqueda, despídidos, etc.) el capital se comporta como un factor cuasi-fijo. En consecuencia, las fluctuaciones de corto plazo son acompañadas fundamentalmente por ajustes en el factor trabajo y en los insumos intermedios.

Este fenómeno da lugar a estallidos procíclicos de productividad, dado que el capital utilizado fluctúa con el ciclo pero no así el "medido", que coincide con el instalado.

Sea \(x = (x_1, ..., x_{k+1})\) el vector de factores, donde \(x_{k+1}\) es el factor cuasi-fijo. En el caso de los factores variables se cumple que \(w_j = \frac{\partial f}{\partial x_j}\) y por tanto \(\theta_j = s_j\) para todo \(j \leq k\). En el caso del factor cuasi-fijo su remuneración no coincide con el valor de su productividad marginal dado que las empresas tienen en cuenta los costos de ajuste y entonces \(\theta_{k+1} \neq s_{k+1}\). En ese caso:

7/ La presencia de este componente pro-cíclico en la PTF explica la aparición frecuente de correlación temporal entre el crecimiento de la PTF con otras variables cíclicas (Tybout).

8/ Alternativamente se puede medición del progreso técnico a partir de la función de costos, \(c = g(w, y, l)\):

\[\frac{A}{\bar{A}} = \left(\frac{\dot{c}}{\bar{c}} - \varepsilon_{\sigma} \frac{\dot{y}}{\bar{y}} - \sum_{i=1}^{N} s_i \frac{\dot{w}_i}{\bar{w}_i} \right) \varepsilon_{\sigma} \]

donde \(\varepsilon_{\sigma}\) es la elasticidad del costo respecto al producto y refleja las economías de escala.
La diferencia \(\theta_{k+1} - s_{k+1} \) puede ser mayor o menor que cero de acuerdo a la fase del ciclo en que se encuentre la economía; en la fase expansiva como los costos de ajuste amortiguan el crecimiento del factor casi- fijo el valor del producto marginal del factor excederá su precio, lo opuesto ocurrirá en caso de recesión. Como la magnitud del costo de ajuste dependerá probablemente de la dirección del cambio, los valores promedios quedarán afectados por el sesgo de todos modos.

\[
\begin{cases}
\theta_{k+1} > s_{k+1} & \text{si } \gamma/y > 0 \\
0_{k+1} > s_{k+1} & \text{si } \gamma/y < 0
\end{cases}
\]

Este tipo de problema puede ser considerado como un caso especial de ausencia de rendimientos constantes a escala, ya que precisamente en presencia de costos de ajustes se producen desviaciones de corto plazo en los rendimientos constantes. Tybout plantea varias alternativas para el tratamiento de este problema:

a) Calcular el crecimiento a partir de los máximos cíclicos, bajo el supuesto que la capacidad plena caracteriza esos años (comparaciones "peak to peak").

b) Ponderar el stock de capital por alguna medida de utilización de capacidad. Aunque estos ajustes de capacidad no se reconcilian con tecnologías de producción que suponen una sustitución "suave" entre trabajo y capital, pueden ser justificados bajo el supuesto de tecnología de coeficientes fijos.

c) Imputar el "verdadero" valor del producto marginal del capital (precicio sombra) bajo la hipótesis de una función de producción neoclásica. En el caso de retornos constantes a escala y un factor casi-fijo, dado que las elasticidades-producto de los factores deben sumar 1, el ponderador para el factor casi-fijo es uno menos la sumatoria de las participaciones de los otros productos. Esta solución simple fue sugerida por Hulten (1986).

3. La ausencia de competencia perfecta

Otra distorsión que altera la igualdad entre participación del factor y su elasticidad-producto, es la existencia de algún poder de mercado. Suponiendo una situación monopólica, la empresa maximiza beneficios de acuerdo a la siguiente ecuación:

\[
\text{Max } [p(y)y - wx]
\]

La condición de primer orden para la maximización de beneficios en monopolio es:
(25) \[w = p \frac{\partial y}{\partial x} \left(1 + \frac{1}{e} \right) \]

siendo \(e \) la elasticidad precio de la demanda. Definiendo \(\mu = 1/e \), de la expresión anterior se deduce que:

(26) \[\frac{\partial y}{\partial x} = \frac{w}{p(1+\mu)} \]

Como se recordará la elasticidad producto del j-ésimo factor es igual a:

(27) \[\theta_j = \frac{\partial y}{\partial x_j} \]

Sustituyendo (26) en (27) se obtiene que:

(28) \[\theta_j = \frac{w_j x_j}{p y} \frac{1}{1 + \mu} = s_j \frac{1}{1 + \mu} \]

De la expresión anterior resulta claro que las participaciones relativas en el ingreso \(s_j \) subestiman el producto marginal ya que \(\mu < 0 \). De este modo el cambio en la PTF estimado a partir de las participaciones relativas en el ingreso de los factores resulta sesgado en la siguiente expresión la que, por otra parte, se comporta en forma procíclica ya que aumenta con el crecimiento de los factores:

(29) \[\frac{\Delta PTF}{PTF} = \frac{A}{A} - \mu \sum_{i=1}^{N} \theta_i \]

Hall (1986) propone solucionar el problema mediante una estimación econométrica, suponiendo retornos constantes a escala y sólo dos factores, capital y trabajo:

(30) \[\frac{\hat{y}}{y} - \frac{\hat{x}_K}{x_K} = \beta_0 + \beta_1 s_L \left(\frac{\hat{x}_K}{x_L} - \frac{\hat{x}_K}{x_K} \right) + u \]

siendo \(x_L \) el trabajo y \(x_K \) el capital. De esta forma el estimador de \(\beta_0 \) proporciona una estimación consistente de la tasa media de crecimiento de la PTF mientras que el estimador de \(\beta_1 \) permite obtener una estimación del "mark-up" \((1/1+\mu)\).

Esta solución puede además extenderse para el caso de retornos crecientes o decrecientes a escala, en este caso la ecuación apropiada a estimar es:

donde el estimador de \(\beta_2 \) proporciona una medición de los retornos a escala.
Según Tybout, si bien esta metodología es atractiva su validez descansa en la disponibilidad de buenas variables instrumentales, dada la posible correlación entre el término de error (u) y el crecimiento de los factores. Otro cuestionamiento refiere a que la metodología supone mercados de factores competitivos.

4. La ausencia de homogeneidad tecnológica

Aún en el marco de una misma industria o de un mismo tramo de tamaño de dicha industria, es llamativa la heterogeneidad de las unidades productivas desde el punto de vista tecnológico, lo que se evidencia en disímiles ratios de capital-trabajo, de composición del capital, de calificación de su mano de obra, de nivel gerencial, etc.. Si, como afirma Tybout, los cambios en la productividad están sistemáticamente inducidos por cambios en la distribución de las plantas de acuerdo a estos indicadores, el proceso de crecimiento de la productividad no puede ser medido ni mucho menos analizado a nivel macro o sectorial. El gran desarrollo que están teniendo los modelos de entradas y salidas de firmas se enmarca en la necesidad de evaluar los cambios en la distribución de las plantas precisamente a nivel microeconómico.

El propio Tybout provee un tratamiento del tema a nivel microeconómico a partir de la consideración de indicadores a nivel de firma. El producto de un sector puede expresarse como el resultado de multiplicar el producto por unidad de insumo (a), por la cantidad de insumo utilizado por planta (f), por el número de plantas (n). En términos discretos el crecimiento del producto puede escribirse como:

\[
\frac{\Delta y}{y_{t-1}} = w_1 \frac{\Delta a}{a_{t-1}} + w_2 \frac{\Delta f}{f_{t-1}} + w_3 \frac{\Delta n}{n_{t-1}}
\]

es decir, el crecimiento del producto es igual al crecimiento en la productividad más el incremento en la cantidad de insumos utilizados. El aporte de esta ecuación es discriminar el incremento en los insumos entre cambios en la escala promedio de operación y en el número de plantas del sector.

Precisamente la propuesta para analizar la influencia de la heterogeneidad de las plantas y sus entradas y salidas en el crecimiento del producto, es desagregar las variaciones en la productividad (en la escala de operaciones) como resultados de cambios en la productividad (escala) de las empresas existentes, diferencias de productividad (escala) entre las empresas entrantes y las salientes, y los efectos debido a los cambios en la participación en el mercado de las existentes.
III. LA TEORÍA DE LOS NÚMEROS ÍNDICES

Hasta no hace muchos años la aproximación a partir de los números índices a la medida del cambio en la PTF era considerada tan sólo una especie de "second best" ante las frecuentes limitaciones que imponía la información disponible y que volvían imposible la aproximación econométrica, considerada más adecuada para comparar estructuras de producción. Esta visión se basaba en la creencia de que los números índices son consistentes sólo con estructuras de producción muy restringidas. Como sostienen Caves et al (1982) "Nuestros resultados muestran que esa creencia es errónea, en efecto, las estructuras de producción consideradas en este artículo son tan generales que son difíciles de estimar econometricamente".

Como ya fue señalado, para la construcción de un índice de productividad en presencia de varios productos y varios insumos es necesaria la especificación de una forma concreta para los índices de cantidad. La discusión sobre la mejor forma que deben adoptar conduce a determinar cuál es, a su vez, la mejor forma de agregación de insumos y productos. Esto no es más que el centro de la llamada teoría de los números índices.

Según Diewert (1993) la pregunta que se intenta responder es, en última instancia, ¿cómo se pueden agregar los datos individuales de precios y cantidades, de forma que el producto de precios a nivel agregado por el nivel agregado de cantidades sea igual a la suma de los precios individuales por las respectivas cantidades para todos los bienes? Es decir, siendo q_t y p_t las cantidades y los precios, de los bienes consumidos o producidos en el período t, teniendo los datos microeconómicos para T períodos y N bienes se debe encontrar la solución al problema de la agregación de bienes tal que los N precios agregados (P) y las N cantidades agregadas (Q) cumplan:

\[
P^t Q^t = \sum_{i=1}^{N} p_t^i q_t^i \quad \text{para } t = 1, 2, \ldots, T
\]

Dos aproximaciones distintas a la medición de cantidades y precios pueden distinguirse en la literatura sobre la teoría de los números índices: la aproximación atomística que comprende, a su vez, dos enfoques, el estadístico y el axiomático, y la aproximación económica a la que Samuelson y Swamy (1974) han denominado la teoría económica de los números índices. La principal diferencia entre ambas radica en que la aproximación atomística considera los índices Q y P como funciones de vectores de cantidad y precios que se determinan independientemente. En la aproximación económica, en cambio, el vector de cantidades es una variable dependiente que se determina como solución a un problema de optimización microeconómico que involucra al vector de precios observados.

A. LA APROXIMACIÓN ATOMÍSTICA

De acuerdo a esta aproximación los índices no son más que una medida estadística simple de la tendencia central de un conjunto de observaciones. Siendo \(p_t^i / p_{t-1}^i \) el índice de precio del bien i, en ausencia de más información, una medida simple del cambio de precios es la media
aritmética simple de los N índices de precios. En el caso de observaciones con valores extremos puede ser más apropiado considerar una media geométrica de los N precios relativos.

\[
P_A = \sum_{i=1}^{N} \frac{1}{N} \left(\frac{p_i^{t+1}}{p_i^t} \right), \quad P_G = \prod_{i=1}^{N} \left(\frac{p_i^{t+1}}{p_i^t} \right)^{\frac{1}{N}}
\]

Ambas fórmulas consideran los cambios en los precios de todos los bienes con igual importancia. En la práctica, es posible definir un sistema de ponderaciones que permita jerarquizar los distintos bienes, esto lleva a las fórmulas de medias aritméticas y geométricas ponderadas

\[
P_A = \sum_{i=1}^{N} s_i \left(\frac{p_i^{t+1}}{p_i^t} \right), \quad P_G = \prod_{i=1}^{N} \left(\frac{p_i^{t+1}}{p_i^t} \right)^{s_i}
\]

donde \(s_i\) corresponde a la ponderación del artículo \(i\), cumpliendo además que \(s_i \geq 0\) y \(\sum s_i = 1\). Diferentes definiciones de los ponderadores \((s_i)\) llevan a distintos índices. Un caso de media geométrica ponderada de interés, es la que define al índice de Törnqvist. En este caso \(s_i\) se define como la media aritmética de las participaciones del bien \(i\) en ambos períodos, \(s_i = (s_i' + s_i'')/2\).

1. **La aproximación estadística**

Esta visión tiene su origen en la afirmación de Jevons con respecto a que el aumento en la oferta de dinero incrementaba todos los precios proporcionalmente, y que las diferencias en el incremento para distintos bienes respondía a fluctuaciones aleatorias. Por tanto, con un número de observaciones independientes, suficientemente grande, es posible obtener un estimador inesgado, cuya forma depende de la especificación del error. Permite, además, tener una idea de la precisión de las estimaciones a través de la construcción de intervalos de confianza para los índices elaborados.

Así, cada precio relativo \((p_i^{t+1}/p_i^t)\) es igual al índice de precios que mide el cambio en el conjunto de precios más otros componentes aleatorios y no aleatorios. Por lo tanto, si tenemos N precios relativos el índice de precios puede ser estimado tomando algún tipo de promedio de ellos. Si suponemos, como Jevons, que los errores son multiplicativos el estimador adecuado del índice de precios es la media geométrica de los incrementos de precios de cada bien (el índice de Jevons, \(P_J\), coincide con el índice \(P_G\) de la ecuación (35)). Si, en cambio, se supone un error aditivo la forma apropiada del estimador es la media aritmética (índice \(P_A\) de la ecuación (35)).
III. LA TEORÍA DE LOS NÚMEROS ÍNDICES

Hasta no hace muchos años la aproximación a partir de los números índices a la medida del cambio en la PTF era considerada tan sólo una especie de "second best" ante las frecuentes limitaciones que imponía la información disponible y que volvían impropiable la aproximación econométrica, considerada más adecuada para comparar estructuras de producción. Esta visión se basaba en la creencia de que los números índices son consistentes sólo con estructuras de producción muy restringidas. Como sostienen Caves et al (1982) "Nuestros resultados muestran que esa creencia es errónea, en efecto, las estructuras de producción consideradas en este artículo son tan generales que son difíciles de estimar econométricamente".

Como ya fue señalado, para la construcción de un índice de productividad en presencia de varios productos y varios insumos es necesaria la especificación de una forma concreta para los índices de cantidad. La discusión sobre la mejor forma que deben adoptar conduce a determinar cuál es, a su vez, la mejor forma de agregación de insumos y productos. Esto no es más que el centro de la llamada teoría de los números índices.

Según Dicwert (1993) la pregunta que se intenta responder es, en última instancia, ¿cómo se pueden agregar los datos individuales de precios y cantidades, de forma que el producto de precios a nivel agregado por el nivel agregado de cantidades sea igual a la suma de los precios individuales por las respectivas cantidades para todos los bienes? Es decir, siendo \(q^t_{i} \) y \(p^t_{i} \), las cantidades y los precios, de los bienes consumidos o producidos en el período \(t \), teniendo los datos microeconómicos para \(T \) períodos y \(N \) bienes se debe encontrar la solución al problema de la agregación de bienes tal que los \(N \) precios agregados \((P) \) y las \(N \) cantidades agregadas \((Q) \) cumplan:

\[
P^t Q^t = \sum_{i=1}^{N} p^t_{i} q^t_{i} \quad \text{para} \quad t = 1, 2, ..., T
\]

Dos aproximaciones distintas a la medición de cantidades y precios pueden distinguirse en la literatura sobre la teoría de los números índices: la aproximación atomística que comprende, a su vez, dos enfoques, el estadístico y el axiomático, y la aproximación económica a la que Samuelson y Swamy (1974) han denominado la teoría económica de los números índices. La principal diferencia entre ambas radica en que la aproximación atomística considera los índices \(Q \) y \(P \) como funciones de vectores de cantidad y precios que se determinan independientemente. En la aproximación económica, en cambio, el vector de cantidades es una variable dependiente que se determina como solución a un problema de optimización microeconómico que involucra al vector de precios observados.

A. LA APROXIMACIÓN ATOMÍSTICA

De acuerdo a esta aproximación los índices no son más que una medida estadística simple de la tendencia central de un conjunto de observaciones. Siendo \(p^t_{i}/p^t_{i-1} \) el índice de precio del bien \(i \), en ausencia de más información, una medida simple del cambio de precios es la media
aritmética simple de los N índices de precios. En el caso de observaciones con valores extremos puede ser más apropiado considerar una media geométrica de los N precios relativos.

\[
\begin{align*}
 P_A &= \sum_{i=1}^{N} \frac{1}{N} \left(\frac{p_{i}^{t+1}}{p_{i}^{t}} \right), \\
 P_G &= \prod_{i=1}^{N} \left(\frac{p_{i}^{t+1}}{p_{i}^{t}} \right)^{\frac{1}{N}}
\end{align*}
\]

Ambas fórmulas consideran los cambios en los precios de todos los bienes con igual importancia. En la práctica, es posible definir un sistema de ponderaciones que permita jerarquizar los distintos bienes, esto lleva a las fórmulas de medias aritméticas y geométricas ponderadas

\[
\begin{align*}
 P_A &= \sum_{i=1}^{N} s_i \left(\frac{p_{i}^{t+1}}{p_{i}^{t}} \right), \\
 P_G &= \prod_{i=1}^{N} \left(\frac{p_{i}^{t+1}}{p_{i}^{t}} \right)^{s_i}
\end{align*}
\]

donde \(s_i \) corresponde a la ponderación del artículo i, cumpliendo además que \(s_i \geq 0 \) y \(\sum s_i = 1 \).

Diferentes definiciones de los ponderadores \((s_i) \) llevan a distintos índices. Un caso de media geométrica ponderada de interés, es la que define al índice de Törnqvist. En este caso \(s_i \) se define como la media aritmética de las participaciones del bien i en ambos períodos, \(s_i = (s_i + s_i^{-1})/2 \).

1. La aproximación estadística

Esta visión tiene su origen en la afirmación de Jevons con respecto a que el aumento en la oferta de dinero incrementaba todos los precios proporcionalmente, y que las diferencias en el incremento para distintos bienes respondía a fluctuaciones aleatorias. Por tanto, con un número de observaciones independientes, suficientemente grande, es posible obtener un estimador insesgado, cuya forma depende de la especificación del error. Permite, además, tener una idea de la precisión de las estimaciones a través de la construcción de intervalos de confianza para los índices elaborados.

Así, cada precio relativo \((p_{i}^{t+1}/p_{i}^{t}) \) es igual al índice de precios que mide el cambio en el conjunto de precios más otros componentes aleatorios y no aleatorios. Por lo tanto, si tenemos N precios relativos el índice de precios puede ser estimado tomando algún tipo de promedio de ellos. Si suponemos, como Jevons, que los errores son multiplicativos el estimador adecuado del índice de precios es la media geométrica de los incrementos de precios de cada bien (el índice de Jevons, \(P_J \), coincide con el índice \(P_G \) de la ecuación (35)). Si, en cambio, se supone un error aditivo la forma apropiada del estimador es la media aritmética (índice \(P_A \) de la ecuación (35)).
Esta aproximación ha merecido una creciente atención en las últimas décadas. Trabajos recientes se han concentrado en demostrar cómo varios de los números índices existentes pueden ser obtenidos usando una aproximación estadística.

2. La aproximación axiomática

Según esta aproximación los índices son función de 4 vectores, los vectores de precios del período t y del período t+1 y los vectores de cantidades de ambos períodos. Este planteamiento es conocido como la teoría de los números índices bilaterales pues involucra la comparación de precios y cantidades en dos períodos.

\[
\frac{p^{t+1}}{p^t} = P(p^t, p^{t+1}, q^t, q^{t+1}) \quad \text{y} \quad \frac{Q^{t+1}}{Q^t} = Q(p^t, p^{t+1}, q^t, q^{t+1})
\]

El origen de la aproximación axiomática tiene sus raíces en la observación más o menos casual de los primeros investigadores de los números índices. El primer trabajo sistemático enmarcado en esta aproximación fue el de Fisher (en 1921), quién reconoció la posibilidad de utilizar varias fórmulas estadísticas para construir un número índice, y propuso seleccionar aquélla que cumpliera un número de test intuitivos considerados apropiados. Además fue el primero en observar que la elección de la forma funcional de P determina implícitamente la forma del índice de cantidad Q correspondiente, pues el cambio en el valor entre 2 períodos debe poder descomponerse, en un cambio en los precios (dado por el índice de precios, P) y un cambio en las cantidades (dado por el índice de cantidades, Q).

Históricamente los investigadores concentraron sus esfuerzos en la determinación de P. Las propiedades planteadas como deseables son generalmente analogías multidimensionales de las propiedades del índice de precios para un solo bien \((p'q'/p_1)\). Las propiedades más generalmente requeridas se pueden resumir en los siguientes grupos:

\[\text{\footnotesize 2}^{1/}\] Para una revisión de la construcción de números índices usando la aproximación estocástica ver "Index numbers. A stochastic approach", E. Selvanathan y D. Prasada Rao, 1994.

\[\text{\footnotesize 10}^{1/}\] Es a primera vista natural requerir que el nivel de precios en t sea una función del vector de precios de dicho período, \(P^t = P(p^t)\) y que el nivel de cantidad lo sea del vector de cantidades de dicho período, \(Q^t = Q(q^t)\). Sin embargo esta alternativa no permite una solución al problema de la agregación cuando la cantidad de bienes es mayor que 2. Otra opción es plantear que ambos niveles, de precios y cantidades, sean función de los vectores de precios y cantidades del período, \(P^t = P(p^t, q^t)\) y \(Q^t = Q(p^t, q^t)\). Los índices construidos de esta forma plantean problemas de inconsistencia para un conjunto reducido de propiedades razonables. Una última alternativa es la teoría de los números índices multilaterales, en la cual ambos agregados de precios y cantidades son función de los vectores de precios y cantidades de todos los períodos en consideración.

\[\text{\footnotesize 11}^{1/}\] En el Anexo se exponen estas propiedades con mayor detalle.
i) signo (el índice debe ser positivo), continuidad en sus argumentos, identidad (si los precios no varían el índice de precios no debe variar) y commensurabilidad (el valor del índice no debe estar afectado por la unidad de medida utilizada).

ii) las propiedades de homogeneidad, refieren a como debe variar el índice ante cambios proporcionales en alguno de los 4 vectores.

iii) los tests de reversibilidad.

iv) los tests del valor medio, establecen dos rangos en los que se debe ubicar el valor del índice. El índice de precios debe ubicarse en el rango determinado por el menor y el mayor ratio de los precios individuales que componen el índice, y además debe caer en la franja determinada por los valores de los índices de precios de Paasche y de Laspeyres.

v) los tests de monotonicidad, es decir el índice de precios debe ser creciente en los precios corrientes y decreciente respecto a los precios base, similarmente, el índice de cantidad implícito debe ser creciente en las cantidades corrientes y decreciente en las cantidades del período base.

La crítica a esta aproximación sostiene que ninguna fórmula de número índice puede satisfacer todas las propiedades razonables que se han propuesto y que no hay un acuerdo general en cuál es el subconjunto de axiomas relevante. Al respecto, Diewert (1992) analiza un subconjunto de 20 test, propuestos por distintos investigadores, y del análisis de los diversos índices concluye que sólo el Índice Ideal de Fisher cumple con todas las propiedades.

B. LA APROXIMACIÓN ECONÓMICA

La teoría económica de los números índices se basa en la definición de problemas de optimización restringida que pueden formularse tanto en el contexto de la teoría del productor como en el contexto de la teoría del consumidor. En el caso de un productor (consumidor) el problema de optimización restringida consiste en minimizar costos para alcanzar un cierto nivel de producto (utilidad) o en maximizar el producto (utilidad) sujeto a una restricción presupuestal. Dado que el objetivo del presente trabajo es la medición de los cambios en la productividad, resulta más adecuado utilizar, en lo que sigue, la terminología de la teoría del productor. En este contexto es posible formular índices de cantidades y precios tanto para insumos como para productos.

Se presenta primero la teoría de los índices de precios. Considérese un productor que quiere minimizar el costo de obtener un cierto nivel de producto \tilde{y}. Sea $x = (x_1, \ldots, x_n)$ un

12/ En esta línea se han formulado varios teoremas que muestran la imposibilidad del cumplimiento simultáneo de algunos tests.

13/ Esta aproximación fue propuesta por Konüs (1924) para la obtención de un índice de precios en el contexto de la teoría del consumidor, en su trabajo titulado "El problema del verdadero índice del costo de vida".
La aproximación económica, plantea como deseable que un índice sea además superlativo. Lo es cuando es un índice exacto para una función flexible. La importancia de esta característica para un índice de productividad, es que proporciona un marco para el cálculo de la productividad usando sólo precios y cantidades observadas de productos e insumos, consistente con una estructura de producción muy general.

Tanto la aproximación axiomática como la económica tienen debilidades: i) la aproximación axiomática sufre de una falta de consenso de cuales deben ser los axiomas o tests apropiados, ii) la aproximación económica requiere del supuesto de comportamiento tomador de precios y de la existencia de retornos a escala constantes o decrecientes, iii) ambas suponen la no aparición de nuevos insumos ni de nuevos productos entre \(t \) y \(t+1 \).

C. LOS ÍNDICES MÁS USADOS EN LA MEDICIÓN DE LA PTF

De la teoría de los números índices se desprende que hay dos formas funcionales que son las más convenientes para elaborar un índice de cantidades o precios, el índice de Törnqvist y el índice ideal de Fisher. Ambos reúnen la condición de ser índices superlativos (aproximación económica) y cumplen un conjunto razonable de propiedades (aproximación axiomática), aunque, como demuestra Diewert, el índice de Fisher es el que cumple un conjunto más amplio de axiomas.

1. El índice de Törnqvist

Supongamos que la función de producción es una función translog homogénea\(^{16}\):

\[
\ln(f(x)) = \alpha_0 + \sum_{n=1}^{N} \alpha_n \ln x_n + \frac{1}{2} \sum_{f=1}^{N} \sum_{i=1}^{N} \gamma_{ij} \ln x_f \ln x_i
\]

donde las condiciones de homogeneidad son \(\Sigma \alpha_n = 1 \), \(\gamma_{ij} = \gamma_{ji} \) y \(\Sigma \gamma_{ii} = 0 \). Diewert demuestra que bajo el supuesto de maximización del ingreso, \(x^* \) es solución de \(\max (f(x) / p x = p x^*) \), el índice de cantidad de insumos de Törnqvist es exacto para una función homogénea translog, y por tanto es superlativo.

\[
\frac{f(x^1)}{f(x^0)} = \prod_{n=1}^{N} \left(\frac{x_n^{1}}{x_n^{0}} \right)^{1 + \frac{s_n^{1}}{2}} = Q_T(w^0,w^1,x^0,x^1)
\]

donde \(s_n^{1} = w_n x_n^{1} / \bar{w} x^1 \), es la participación del insumo \(n \) en el gasto total en insumos del momento \(t \).

\(^{16}\) Jorgenson y Lau han demostrado que la función transcendental logarithmic (translog) homogénea es una función flexible, es decir provee una aproximación de segundo orden a una función linealmente homogénea dos veces diferenciable.
La tecnología de producción puede ser descrita por una función de requerimientos de insumos, \(g(y) \), la cual da el mínimo monto de insumos agregados requeridos para producir el vector de productos \(y \). Suponiendo una forma funcional translog homogénea para la función de requerimientos de insumos

\[
\ln g(y) = a_0 + \sum_{m=1}^{M} a_m \ln y_m + \frac{1}{2} \sum_{j=1}^{M} \sum_{i=1}^{M} c_{ij} \ln y_j \ln y_i
\]

donde \(\sum a_m = 1 \), \(c_{ij} = c_{ji} \) y \(\sum c_{ij} = 0 \) son las condiciones de homogeneidad. Suponiendo que \(y' \) es una solución al problema de minimización de los insumos en el período \(t \), \(\min \{ g(y') / p'y' \} \) (el nivel de producto que minimiza los requerimientos de insumos dado un nivel de ingresos), entonces se puede obtener una fórmula de Törnqvist para agregar las cantidades de productos consistentemente:

\[
g(y') g(y_0) = \prod_{m=1}^{M} \left(\frac{y'_m}{y_0^m} \right)^{v'_m} = Q_T(p^0, p^1, y^0, y^1)
\]

donde \(v'_m = p'_m y'_m / p'y' \), es la participación del producto \(m \) en la producción total del momento \(t \).

La metodología de Jorgenson y Griliches para medir el progreso técnico, puede ser justificado suponiendo que el conjunto de posibilidades de producción eficientes puede ser representado por el conjunto de productos, \(y \), e insumos, \(x \), tal que \(g(y) = f(x) \).

Supongamos que el progreso técnico ocurre entre los periodos 0 y 1 como un movimiento paralelo de las isocuantas de la función de producción, por tanto la ecuación que define el conjunto de posibilidades de producción en el período 1 es \(g(y) = (1+A) f(x) \), donde \(A \) representa el monto de progreso técnico. Finalmente suponiendo que \((y^0, x^0) \) y \((y^1, x^1) \) son las soluciones de los problemas de maximización del beneficio en los respectivos periodos:

\[
\max_{y,x} \{ p^0 y - w^0 x / g(y) = f(x) \}
\]
\[
\max_{y,x} \{ p^1 y - w^1 x / g(y) = (1+A) f(x) \}
\]

Entonces tenemos que \(g(y^0) = f(x^0) \) y \(g(y^1) = (1+A) f(x^1) \). Al ser \((y', x') \) soluciones del problema de maximización del beneficio en cada período, es fácil ver que son respectivamente soluciones del problema de minimización de insumos y del problema de maximización del producto para \(t = 1, 2 \), por tanto se cumplen las ecuaciones (46) y (48). Sustituyendo ambas en la identidad \(g(y^1) / g(y^0) = (1+A) f(x^1) / f(x^0) \) podemos obtener un cálculo del progreso técnico como:

\[
(1+A) = \frac{g(y^1) g(y^0)}{f(x^1) g(x^0)} = \frac{Q_T(p^0, p^1, y^0, y^1)}{Q_T(w^0, w^1, x^0, x^1)}
\]

El método Jorgenson-Griliches de medición del progreso técnico se basa en los siguientes supuestos: (i) el conjunto de posibilidades de producción de la economía puede ser representada por una superficie de transformación separable definida por \(g(y) = f(x) \), donde
vector de insumos no negativo, f la función de producción tal que \(y = f(x) \) representa el nivel de producto que se obtiene cuando se utiliza el vector de insumos \(x, y \) y \(p = (p_1, \ldots, p_n) \) un vector positivo de precios de los insumos \(x \). Entonces la función de costo mínimo, \(C \), se obtiene al resolver el siguiente problema de minimización.

\[
C(p, y) = \min_{x} \{ px / f(x) = y \}
\]

El índice de precios definido por Konüs durante el periodo \(t+1 \) respecto al período \(t \) es el ratio del costo mínimo de obtener un nivel de producto dado, \(y \), en cada periodo cuando los precios de los insumos son \(p' \) y \(p'' \):

\[
P_k(p', p'', y) = \frac{C(p', y)}{C(p', 1)}
\]

Por lo tanto si conocemos la forma funcional de \(C \) y el nivel de referencia del producto, el índice de Konüs puede ser calculado. Si además suponemos que la producción se realiza con rendimientos constantes a escala, \(f(ax) = af(x) \), entonces

\[
P_k(p', p'', y) = \frac{c(p')}{c(p')^*}
\]

siendo \(c(p') \) la función de costo unitario correspondiente a \(f \) (es decir el costo de producir al menos una unidad del producto). Por tanto el índice de precios de Konüs se ve reducido a la comparación de costos unitarios (en esta formulación el índice no depende de un nivel de referencia):}

\[
P_k(p', p'', y) = \frac{c(p''^*)}{c(p')}
\]

Veamos ahora la teoría económica de los índices de cantidad. Una primera alternativa es usar el índice de cantidad implícito de Konüs, es decir utilizar como índice de cantidad el resultado de deflactar el ratio de gastos por el índice de precios de Konüs.

Nota 14: Si la función de producción tiene rendimientos constantes a escala, \(f(x) \geq y \) es equivalente a \(f(x/y) \geq 1 \), por tanto el problema de minimización de costos se puede plantear como:

\[
C(p, y) = \min_{x} \{ px / f(x) \geq y \} = \min_{z} \{ ypz / f(z) \geq 1 \}
\]

definando \(z = x/y \), entonces:

\[
C(p, y) = \min_{z} \{ ypz / f(z) \geq 1 \} = y \min_{z} \{ pz / f(z) \geq 1 \} = yc(p)
\]

Nota 15: Además del índice implícito de Konüs y del índice de Allen, una definición alternativa fue planteada por Malmquist (1953) en el contexto de la teoría del consumidor y por Moorsteen (1961) en el contexto de la teoría del productor. Esta aproximación se basa en la definición de una función de distancia, y permite levantar algunas limitaciones que tiene el índice teórico de Allen. En el punto 3.4 se hace una breve presentación del llamado índice de Malmquist.
Q_k(p', p^{*+1}, x', x^{*+1}, \tilde{y}) = \frac{p^{*+1} x^{*+1}/p' x'}{P_k(p', p^{*+1}, \tilde{y})}

Otra alternativa es utilizar el índice de cantidades definido por Allen (1949) utilizando la función de costo mínimo. Considerando que \(\tilde{y} = f(\bar{x}) \) podemos escribir \(C(p', \tilde{y}) = C(p', f(\bar{x})) \), Allen plantea:

\[Q_A(x', x^{*+1}, p) = \frac{C[p', f(x^{*+1})]}{C[p, f(x')]} \]

Como se demostró anteriormente si suponemos que f tiene rendimientos constantes a escala, \(C[p, f(x)] = c(p)f(x) \). En consecuencia, el índice de cantidad de Allen se reduce a:

\[Q_A(x', x^{*+1}, p) = \frac{c(p)f(x^{*+1})}{c(p)f(x')} = \frac{f(x^{*+1})}{f(x')} \]

El uso empírico de estos índices enfrenta un problema: su cálculo requiere el conocimiento de las funciones que involucran, el índice de precios requiere el conocimiento de la función de costos y el de cantidades el de la función de producción. Existen por lo menos 3 métodos diferentes para hacer operacionales dichos índices teóricos: i) la estimación econométrica de la forma funcional postulada para la función de producción o de costo, ii) límites no paramétricos y iii) la teoría de los números índices exactos.

La estimación econométrica es un método relativamente directo. Se postula una forma funcional para la función de costos \(C \) o para la función de producción \(F \) y se estiman los parámetros desconocidos. Generalmente se suponen formas funcionales flexibles, que son aquellas que proveen una aproximación de segundo orden a una función de producción arbitraria linealmente homogénea (o a su dual, una función de costos dos veces diferenciable). El problema del uso de esta aproximación para funciones flexibles es que se vuelven inmanejables cuando el número de bienes a ser agregados crece, dado que el número de parámetros a ser estimados crece también.

Una forma alternativa es el llamado método de los límites. Se basa en que se puede demostrar que el índice de precios teórico de Konüs está limitado "por abajo" por el índice de precios observable de Laspeyres y "por arriba" por el índice de precios observable de Paasche. La brecha entre estos índices de Paasche y Laspeyres incluye el valor del índice teórico, esto sugiere que tomando alguna suerte de promedio de ambos índices se puede obtener un índice de precios observable cercano al teórico.

Por último, el método de los números índices exactos, plantea una forma funcional explícita para la función de producción o para la función dual de costos al que se le agrega el supuesto de comportamiento optimizador. De este modo, se puede determinar el valor del índice de precios o cantidades usando sólo los datos observados de ambas variables. Se dice que un índice observable de cantidades es exacto, cuando es exactamente igual al índice teórico para una forma funcional determinada bajo el supuesto de comportamiento optimizador: \(Q_A = Q(p', p^{*+1}, x', x^{*+1}) = f(x^{*+1}) / f(x') \).
La aproximación económica, plantea como deseable que un índice sea además superlativo, lo es cuando es un índice exacto para una función flexible. La importancia de esta característica para un índice de productividad, es que proporciona un marco para el cálculo de la productividad usando sólo precios y cantidades observadas de productos e insumos, consistente con una estructura de producción muy general.

Tanto la aproximación axiomática como la económica tienen debilidades: i) la aproximación axiomática sufre de una falta de consenso de cuales deben ser los axiomas o tests apropiados, ii) la aproximación económica requiere del supuesto de comportamiento tomador de precios y de la existencia de retornos a escala constantes o decrecientes, iii) ambas suponen la no aparición de nuevos insumos ni de nuevos productos entre t y t + 1.

C. LOS ÍNDICES MÁS USADOS EN LA MEDICIÓN DE LA PTF

De la teoría de los números índices se desprende que hay dos formas funcionales que son las más convenientes para elaborar un índice de cantidades o precios, el índice de Törnqvist y el índice ideal de Fisher. Ambos reúnen la condición de ser índices superlativos (aproximación económica) y cumplen un conjunto razonable de propiedades (aproximación axiomática), aunque, como demuestra Diewert, el índice de Fisher es el que cumple un conjunto más amplio de axiomas.

1. El índice de Törnqvist

Supongamos que la función de producción es una función translog homogénea

\[\ln f(x) = a_0 + \sum_{n=1}^{N} a_n \ln x_n + \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \gamma_{ij} \ln x_j \ln x_i \]

donde las condiciones de homogeneidad son \(\Sigma a_n = 1 \), \(\gamma_{ij} = \gamma_{ji} \) y \(\Sigma \gamma_{ij} = 0 \). Diewert demuestra que bajo el supuesto de maximización del ingreso, \(x^t \) es solución de \(\max \{ f(x) / p'x = p_1 * 1 \} \), el índice de cantidad de insumos de Törnqvist es exacto para una función homogénea translog, y por tanto es superlativo.

\[\frac{f(x^1)}{f(x^0)} = \prod_{n=1}^{N} \left(x_n^1 \right)^{s_n^1} \]

\[= Q_f(w^0, w^1, x^0, x^1) \]

donde \(s_n^1 = w_n^0 x_n^1 / w_n^1 x_n^1 \), es la participación del insumo n en el gasto total en insumos del momento t.

\(^{16/} \) Jorgenson y Lau han demostrado que la función transcendental logarithmic (translog) homogénea es una función flexible, es decir provee una aproximación de segundo orden a una función linealmente homogénea dos veces diferenciable.
La tecnología de producción puede ser descrita por una función de requerimientos de insumos, \(g(y) \), la cual da el mínimo monto de insumos agregados requeridos para producir el vector de productos \(y \). Suponiendo una forma funcional translog homogénea para la función de requerimientos de insumos

\[
\ln g(y) = a_0 + \sum_{m=1}^{M} a_m \ln y_m + \frac{1}{2} \sum_{j=1}^{M} \sum_{i=1}^{M} c_{ji} \ln y_j \ln y_i
\]

donde \(\sum a_m = 1 \), \(c_{ji} = c_{ij} \) y \(\Sigma c_{ji} = 0 \) son las condiciones de homogeneidad. Suponiendo que \(y^* \) es una solución al problema de minimización de los insumos en el período \(t \), \(\min \{ g(y) / p'y \} \) (el nivel de producto que minimiza los requerimientos de insumos dado un nivel de ingresos), entonces se puede obtener una fórmula de Törnqvist para agregar las cantidades de productos consistientemente:

\[
\frac{g(y^*_t)}{g(y^*_0)} = \prod_{m=1}^{M} \left(\frac{y^*_m}{y^*_0} \right)^{\frac{1}{2}} = Q^*_T(p^0, p^1, y^0, y^1)
\]

donde \(v^*_m = p^*_m y^*_m / p^*y^1 \), es la participación del producto \(m \) en la producción total del momento \(t \).

La metodología de Jorgenson y Griliches para medir el progreso técnico, puede ser justificado suponiendo que el conjunto de posibilidades de producción eficientes puede ser representado por el conjunto de productos, \(y \), e insumos, \(x \), tal que \(g(y) = f(x) \).

Supongamos que el progreso técnico ocurre entre los períodos 0 y 1 como un movimiento paralelo de las isocuantas de la función de producción, por tanto la ecuación que define el conjunto de posibilidades de producción en el período 1 es \(g(y) = (1 + A)f(x) \), donde \(A \) representa el monto de progreso técnico. Finalmente suponiendo que \((y^0, x^0) \) y \((y^1, x^1) \) son las soluciones de los problemas de maximización del beneficio en los respectivos períodos:

\[
\max_{x,j} \{ p^0y - w^0x / g(y) = f(x) \}
\]

\[
\max_{x,j} \{ p^1y - w^1x / g(y) = (1 + A)f(x) \}
\]

Entonces tenemos que \(g(y^0) = f(x^0) \) y \(g(y^1) = (1 + A)f(x^1) \). Al ser \((y^*, x^*) \) soluciones del problema de maximización del beneficio en cada período, es fácil ver que son respectivamente soluciones del problema de minimización de insumos y del problema de maximización del producto para \(t = 1, 2 \), por tanto se cumplen las ecuaciones (46) y (48). Sustituyendo ambas en la identidad \(g(y^1) / g(y^0) = (1 + A)f(x^1) / f(x^0) \) podemos obtener un cálculo del progreso técnico como:

\[
(1 + A) = \frac{g(y^1)/g(y^0)}{f(x^1)/f(x^0)} = \frac{Q^*_T(p^0, p^1, y^0, y^1)}{Q_T(w^0, w^1, x^0, x^1)}
\]

El método Jorgenson-Griliches de medición del progreso técnico se basa en los siguientes supuestos: (i) el conjunto de posibilidades de producción de la economía puede ser representada por una superficie de transformación separable definida por \(g(y) = f(x) \), donde
f y g son ambas funciones translog homogéneas, (ii) los productores maximizan beneficios y (iii) el progreso técnico es "neutral".

2. **El índice Ideal de Fisher**

Un desarrollo similar se puede realizar para obtener una medida de la PTF usando el índice Ideal de Fisher, a partir de funciones de producción y de requerimientos de insumos, cuadráticas homogéneas

\[
\begin{align*}
 f(x) &= \left[\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_i x_j \right]^{1/2} \\
 g(y) &= \left[\sum_{i=1}^{M} \sum_{j=1}^{M} b_{ij} y_i y_j \right]^{1/2}
\end{align*}
\]

donde \(a_{ij} = a_{ji} \) y \(b_{ij} = b_{ji} \) (en términos matriciales, las matrices de coeficientes A y B son simétricas).

Bajo el supuesto de que los valores observados de \((x,y)\) en \(t=0,1\) son soluciones de problemas de optimización en cada período, se puede demostrar que el índice Ideal de Fisher es exacto para funciones cuadráticas homogéneas.\(^{17}\)

D. UNA APROXIMACIÓN ECONÓMICA DIFERENTE: EL ÍNDICE DE MALMQUIST

Al analizar la aproximación económica a los números índices, se plantearon dos índices teóricos de cantidades: el índice implícito de Konüs y el índice de Allen. Ninguno de los dos índices cumple la propiedad deseable de homogeneidad en las cantidades. Sin embargo existe un tercer índice teórico que cumple con esa propiedad: el índice de Malmquist.

La tecnología de producción (o la función de preferencias en la teoría del consumidor) puede ser representada por varias funciones alternativas. Las formas más comunes de caracterizarla son la función de producción y la función de costos. Se dice entonces que ambas funciones son duales pues describen igualmente bien la tecnología de una empresa (bajo ciertas condiciones de regularidad se puede obtener la función de producción a partir de la

\(^{17}\) Diewert (1976) demuestra que los índices de cantidad de media cuadrática de orden \(r\) son índices exactos de las funciones de media cuadrática de orden \(r\). El índice ideal de Fisher es un caso particular de este tipo de índices para \(r = 2\).
Malmquist, en el contexto de la teoría del consumidor, propone construir índices de cantidades como ratios de funciones de distancia. Moorsleen aplicando dicha idea en el contexto de la teoría del productor, sugiere construir un índice de cantidades de insumos suponiendo que la estructura de producción no varía entre periodos. Caves, Christensen y Diewert (1982), desarrollan la idea de la distancia de Malmquist pero levantando dicha restricción, de esta forma el método de Malmquist se vuelve adecuado para la definición de un índice de productividad.

La definición del índice de cantidad de Malmquist no requiere el supuesto de comportamiento optimizador, por tanto la ventaja de este indicador con respecto a los anteriores refiere a que éste logra desagregar en sí mismo el efecto progreso técnico y el cambio en la eficiencia técnica.

1. La función de distancia

Considerando \(x = (x_1, \ldots, x_n) \) el vector de insumos, y \(y = (y_1, \ldots, y_m) \) el vector de productos, la tecnología de producción se representa por \(S^t = \{(x', y') \mid \text{tal que } x' \text{ se pueda producir } y' \} \). La función de distancia de los insumos se define como:

\[
D'(x', y') = \max \delta / (x' \delta, y') \in S'
\]

donde \(\delta \) es el máximo factor por el cual es posible dividir los insumos de forma de obtener el nivel de producción \(y' \), por tanto mide la "distancia" entre la cantidad de insumos que usa la empresa \((x') \) y la cantidad mínima que podría usar para obtener ese mismo nivel de producto.

La frontera de este espacio de combinaciones de producción factibles, \(S' \), esta dada por la función de producción, que representa los puntos de máximo producto que se puede obtener dado el nivel de insumos (o el mínimo de insumos que se puede usar dado el nivel de producto) con la tecnología disponible en el momento \(t \). De este modo, la función de distancia también se puede definir como:

\[
D'(x', y') = \max \delta / f'(x' \delta) \geq y'
\]

En otras palabras, el vector de insumos de referencia para medir la distancia se encuentra sobre la función de producción.

18/ Para un análisis detallado de las distintas aproximaciones duales y las condiciones de regularidad necesarias, ver el trabajo de Diewert (1978) "Duality approaches to microeconomic theory" incluido en Essays in Index Number Theory, Volume 1, 1993.
El Gráfico 1 ilustra esta idea para el caso simple de una empresa con un único insumo y un único producto. Suponiendo que la empresa en el período t, utiliza x' y produce y' la distancia es igual entonces al máximo δ tal que $f(x'/\delta)$ sea mayor o igual a y'. Como y' es igual a $f(x')$ y δ es una función creciente, la distancia es el máximo δ de forma que x'/δ sea mayor o igual a x'. Por tanto $D'(x',y')$ es igual a x'/x'.

La función de distancia caracteriza completamente la tecnología. En particular se puede notar que $D'(x',y')=1$ si y sólo si (x',y') se encuentra sobre la frontera (es decir sobre la función de producción), y es mayor que 1 si (x',y') pertenece a S', o sea se produce con ineficiencia, se usan más insumos que los necesarios de acuerdo a la tecnología disponible.

En forma análoga, se puede definir la función de distancia del producto:

$$d'(x',y') = \min \lambda \,(\lambda (x',y') \in S')$$

Es decir, mide la distancia entre la cantidad de producto obtenido por la empresa, y', y la cantidad máxima que puede obtener dado el nivel de insumos utilizados, x'. Utilizando la función de producción, podemos reescribir la función de distancia como:

$$d'(x',y') = \min \lambda \,(\lambda f(x') \geq y'/\lambda)$$

Se puede notar que $d'(x',y')=1$ si y sólo si (x',y') se encuentra sobre la función de producción, y es menor que 1 si se produce con ineficiencia.

2. **El Índice de productividad**

Es posible definir dos aproximaciones a la medición de los cambios en la productividad: usando las funciones de distancia de los productos o las funciones de distancia de los insumos.

El índice de productividad de Malmquist basado en el producto y tomando como referencia la tecnología de la empresa j es:
El gráfico 2 ilustra esta aproximación, para el caso de una empresa que utiliza un único insumo y obtiene un solo producto. Se supone que entre el momento j y el momento k se produce un cambio tecnológico que traslada la función de producción de f_j a f_k. Suponiendo además, para simplificar, que la empresa produce sin problemas de eficiencia, $d_j(x,y) = 1$, el índice de productividad basado en el producto respecto a la tecnología en el momento j queda determinado por:

\[m_j(x_j, x_k, y_j, y_k) = \frac{d_j(x_j, y_j)}{d_j(x_j, y_k)} \]

Como $P(x^*) = y^*$, entonces $\lambda = y^*/y^0$, mide la distancia entre el producto obtenido en el momento k, y^k, y el máximo producto que podría obtener con la tecnología del momento j utilizando la cantidad de insumo x^0, y^0. En este caso m_j es mayor que 1 (pues y^k es mayor que y^0), lo que indica que se produjo un crecimiento en la productividad.

Un índice similar puede definirse usando como referencia la tecnología de la empresa k. Para evitar la elección de un punto de referencia arbitrario, Caves et al. (1982) proponen utilizar como índice de productividad la media geométrica de los dos índices basados en el producto.

\[m^j = d_j(x_j, y_j) = \text{mínimo } \lambda \text{ / } f_j(x^0) \cdot y^k / \lambda \]

Análogamente podemos definir un índice de productividad basado en los insumos:
f y g son ambas funciones translog homogéneas, (ii) los productores maximizan beneficios y (iii) el progreso técnico es "neutral".

2. El índice Ideal de Fisher

Un desarrollo similar se puede realizar para obtener una medida de la PTF usando el índice Ideal de Fisher, a partir de funciones de producción y de requerimientos de insumos, cuadráticas homogéneas

\[
f(x) = \left[\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_i x_j \right]^{\frac{1}{2}}
\]

\[
g(y) = \left[\sum_{i=1}^{M} \sum_{j=1}^{M} b_{ij} y_i y_j \right]^{\frac{1}{2}}
\]

donde \(a_{ij} = a_{ji}\) y \(b_{ij} = b_{ji}\) (en términos matriciales, las matrices de coeficientes A y B son simétricas).

Bajo el supuesto de que los valores observados de \((x_t, y_t)\) en \(t = 0, 1\) son soluciones de problemas de optimización en cada período, se puede demostrar que el índice Ideal de Fisher es exacto para funciones cuadráticas homogéneas.

D. UNA APROXIMACIÓN ECONÓMICA DIFERENTE: EL ÍNDICE DE MALMQUIST

Al analizar la aproximación económica a los números índices, se plantearon dos índices teóricos de cantidades: el índice implícito de Konüs y el índice de Allen. Ninguno de los dos índices cumple la propiedad deseable de homogeneidad en las cantidades. Sin embargo existe un tercer índice teórico que cumple con esa propiedad: el índice de Malmquist.

La tecnología de producción (o la función de preferencias en la teoría del consumidor) puede ser representada por varias funciones alternativas. Las formas más comunes de caracterizarla son la función de producción y la función de costos. Se dice entonces que ambas funciones son duales pues describen igualmente bien la tecnología de una empresa (bajo ciertas condiciones de regularidad se puede obtener la función de producción a partir de la

\[17/\] Diewert (1976) demuestra que los índices de cantidad de media cuadrática de orden \(r\) son índices exactos de las funciones de media cuadrática de orden \(r\). El índice ideal de Fisher es un caso particular de este tipo de índices para \(r = 2\).
Malmquist, en el contexto de la teoría del consumidor, propone construir índices de cantidades como ratios de funciones de distancia. Moorsteen aplicando dicha idea en el contexto de la teoría del productor, sugiere construir un índice de cantidades de insumos suponiendo que la estructura de producción no varía entre períodos. Caves, Christensen y Diewert (1982), desarrollan la idea de la distancia de Malmquist pero levantando dicha restricción, de esta forma el método de Malmquist se vuelve adecuado para la definición de un índice de productividad.

La definición del índice de cantidad de Malmquist no requiere el supuesto de comportamiento optimizador, por tanto la ventaja de este indicador con respecto a los anteriores refiere a que éste logra desagregar en sí mismo el efecto progreso técnico y el cambio en la eficiencia técnica.

1. La función de distancia

Considerando \(x = (x_1, x_n) \) el vector de insumos, y \(y = (y_1, y_m) \) el vector de productos, la tecnología de producción se representa por \(S^1 = \{(x', y') \text{ tal que con } x' \text{ se pueda producir } y'\} \). La función de distancia de los insumos se define como:

\[
D'(x', y') = \max_{\delta} \frac{y'}{\delta}, (x'/\delta, y') \in S'
\]

donde \(\delta \) es el máximo factor por el cual es posible dividir los insumos de forma de obtener el nivel de producción \(y' \), por tanto mide la "distancia" entre la cantidad de insumos que usa la empresa \(x' \) y la cantidad mínima que podría usar para obtener ese mismo nivel de producto \(y' \).

La frontera de este espacio de combinaciones de producción factibles, \(S' \), está dada por la función de producción, que representa los puntos de máximo producto que se puede obtener dado el nivel de insumos (o el mínimo de insumos que se puede usar dado el nivel de producto) con la tecnología disponible en el momento \(t \). De este modo, la función de distancia también se puede definir como:

\[
D'(x', y') = \max_{\delta} \frac{y'}{f'(x'/\delta)}, y' \geq y'
\]

En otras palabras, el vector de insumos de referencia para medir la distancia se encuentra sobre la función de producción.

18/ Para un análisis detallado de las distintas aproximaciones duales y las condiciones de regularidad necesarias, ver el trabajo de Diewert (1978) "Duality approaches to microeconomic theory" incluido en Essays in Index Number Theory, Volume 1, 1993.
M(jc',x*,y',y*) = D'

D(x',y') D^xKy1) D k(x',y')

Ambos índices de productividad coinciden solo en el caso de rendimientos constantes a escala. En presencia de rendimientos crecientes o decrecientes a escala ambos índices difieren en un término que se relaciona con los parámetros de escala (Caves et al.). Por ejemplo en presencia de rendimientos crecientes a escala la distancia medida en los insumos es menor que la distancia medida en los productos, dado que un incremento de los insumos implicará un incremento mayor en los productos.

El índice de productividad de Malmquist propuesto es un índice teórico. Su utilización requiere el conocimiento de la función de distancia la cual no es directamente observable. Como vimos al analizar la aproximación económica una solución es trabajar con índices exactos. Caves et al demuestran que los índices de Törnqvist son exactos para la media geométrica de los índices de Malmquist, bajo supuestos similares a los vistos en el punto III.C.1, es decir funciones de distancia translog, eficiencia técnica, rendimientos constantes a escala y cantidades de insumos y productos observados solución de problemas de optimización. Diewert (1992) demuestra que el índice de Fisher es también exacto para los índices de Malmquist.

Färe, Grosskopf, Norris y Zhang (1994), plantean que el índice propuesto por Caves et al (1982), permite desagregar el crecimiento de la productividad en 2 componentes: cambios en la eficiencia técnica y cambios en la tecnología\(^{19}\).

\[(59)\]

\[M(x',x^t,y',y^t) = \sqrt{M^tM^k} = \left[\frac{D^t(x^t,y^t) D^k(x^t,y^t)}{D'^t(x',y') D'^k(x',y')} \right]^{\frac{1}{2}} \]

El primer término representa el cambio en la eficiencia. Recordando que \(d_d^t(x^t,y^t)\) se puede interpretar como la eficiencia con que produce la empresa en el momento \(t+1\), y \(d_d^t(x^t,y^t)\) como la eficiencia de la producción en el momento \(t\), el coeficiente da un indicador del cambio en la eficiencia en la producción. Un cociente mayor que 1 indica una mejora en el nivel de eficiencia de la producción.

El término entre corchetes se interpreta como un indicador del cambio técnico. Considerando que \(d^t(x^t,y^t)\) mide la "distancia" de \((x^t,y^t)\) a la función de producción del periodo \(t\) y \(d^{t+1}(x^{t+1},y^{t+1})\) mide la "distancia" desde el mismo punto a la función de producción del periodo \(t+1\), su cociente recoge el desplazamiento de la función de producción entre ambos periodos. El cociente \(d^t(x^t,y^t)/d^{t+1}(x^t,y^t)\) mide ese mismo desplazamiento tomando como referencia el punto \((x',y')\). Por tanto la media geométrica de ambos cocientes proporcionan una medida del desplazamiento de la función de producción, el que se puede identificar con el cambio técnico.

\(^{19}\) Al trabajar con datos por país, la técnica construye una frontera mundial: la aproximación de un país a la frontera es señal de un proceso de catching up, los movimientos de la frontera causados por los datos de un país reflejan el cambio técnico o "innovación".
IV. LA ESTIMACIÓN DE UN ÍNDICE DE PTF

A. UNA APLICACIÓN EMPÍRICA: LA METODOLOGÍA DEL BLS

En lo que sigue, se discuten las posibilidades de aplicar una metodología similar a la de la Oficina de Estadísticas Laborales (BLS) de Estados Unidos para calcular la PTF para la industria uruguaya en su conjunto y para su desagregación a 2, 3 y 4 dígitos de la CIIU. Como se plantea en los trabajos de la BLS, el objetivo debe ser construir series en un marco conceptual consistente, que proviene de la teoría microeconómica de la empresa. La idea de este marco es evitar supuestos restrictivos en la agregación de las variables.

Esta Oficina es una de las principales fuentes de estadísticas laborales. A sus estadísticas de productividad parcial del trabajo ha ido agregando las estimaciones de la productividad multifactor o PTF. El índice se definía en un principio como el cambio anual en el producto, medido por el Valor Agregado, por unidad combinada de capital y trabajo.

Recientemente el BLS ha publicado estadísticas de productividad multifactor con una nueva metodología. El nuevo índice denominado KLEMS extiende los insumos considerados, incorporando además de capital (K) y trabajo (L), energía (E), materiales (M) y servicios (S). Con esta nueva definición el producto es medido a través del Valor Bruto de Producción. Como se señala en la propia publicación, las ventajas de este nuevo indicador sobre el anterior son: permite una mejor medida de los avances en la eficiencia productiva, pues capta las economías en el uso de materiales y otros insumos; se relaciona directamente con el precio del producto (el precio con el cual la empresa compite con otra) y no con un "defactor implícito del valor agregado"; y, por último, provee un mejor entendimiento del uso de los factores primarios desde que toma en cuenta su relación con todos los precios y cantidades de los insumos.

El uso del VAB en muchos de los trabajos empíricos, ha sido justificado teóricamente según Diewert (1978) con la utilización de dos supuestos alternativos\(^2\). Una opción, que evita la realización de supuestos restrictivos sobre la forma de la función de producción, es asumir que los precios de los productos e insumos intermedios varían proporcionalmente, en cuyo caso el valor agregado nominal deflactado puede usarse en sustitución del producto real. Otra alternativa es suponer que la función de producción agregada cumple \(f(K,L,M) = g[h(K,L),M] \), donde \(h(K,L) \) es el valor agregado real y \(M \) es el vector de insumos intermedios. Este supuesto de separabilidad implica fuertes restricciones sobre las elasticidades parciales de sustitución.

Como sostiene Diewert ambos supuestos parecen poco probables. En el primer caso la evolución del precio de la energía es un ejemplo importante de no cumplimiento de la proporcionalidad. En el segundo, si esa condición se cumple la elasticidad de sustitución entre energía y cualquier bien de capital o tipo de trabajo debería ser la misma. Esta restricción parece poco probable pues, por ejemplo, es esperable que la energía y ciertos servicios de capital sean complementarios y por tanto tengan elasticidad de sustitución negativa mientras

que la energía y los trabajadores no calificados sean sustitutos y por tanto presenten elasticidad de sustitución positiva. Este autor plantea que muchos de los estudios probablemente presenten sesgos por el tratamiento inadecuado de la energía, llegándose a preguntar incluso cuánto del "residuo" es debido al uso injustificado del valor agregado.

El índice de productividad calculado por la BLS es un índice de Törnqvist "encadenado". El encadenamiento (chain-linking) refiere a la opción de calcular la variación del índice respecto al año inmediatamente anterior y construir por tanto la variación en un período utilizando los índices intermedios. La otra alternativa para la construcción de series con índices bilaterales es el método de la "base fija" que implica el cálculo del índice de cada año comparándolo siempre con un mismo año base. La elección del método del encadenamiento tiene la ventaja que evita las dificultades de los índices de "base fija" debido a la invención de nuevos productos y la obsolescencia de otros cuando se comparan periodos largos. Diewert argumenta también que la utilización del encadenamiento reduce las discrepancias entre las series construidas con distintos números de índices.

1. El problema de la estimación del producto

Existen dos alternativas para medir el producto según sea el índice elegido. En el caso del índice de PTF clásico (considerados solamente trabajo y capital) el producto se debe medir con el Valor Agregado Bruto a precios constantes, mientras que para un índice tipo KLEMS la variable a considerar es el Valor Bruto de Producción a precios constantes.

La forma más habitual de estimación del VAB a precios constantes es como resultado de una doble deflación: la diferencia entre el VBP y los insumos, ambos a precios constantes. Para el caso de la industria uruguaya se pueden obtener ambas series (VBP e insumos) de la Encuesta Industrial Anual (EIA) realizada por el INE, y como deflactores se dispone del Índice de Precios Mayorista (IPM) elaborado por el BCU y de un Índice de Precios de Insumos elaborado por Picardo y De León. Para la segunda opción el producto se mide a través del VBP de la EIA deflactado por el IPM.

La mayoría de estas fuentes permiten obtener datos desagregados a nivel de rama 4 dígitos de la CIIU. Por lo tanto se elige este nivel de desagregación como base para el cálculo del índice de cantidad agregado, de toda la industria o a nivel de división (2 dígitos),

2/ Una tercera alternativa para la construcción de series es el uso de índices multilateral, que toman en cuenta la información de todo el período para el cálculo del índice en cada año (ver Diewert, 1993). Los índices multilateral han merecido recientemente mayor atención como forma más adecuada de calcular índices en estudios internacionales (ver por ejemplo Caves, Christensen y Diewert, 1982).

2/ Al usar variables deflactadas por un índice de precios, se está utilizando un índice de cantidad implícito que, como se definió antes, es el que se obtiene de dividir el valor entre el índice de precios.

23/ Trabajo presentado en el seminario "La industria ante la apertura" organizado por el Departamento de Economía de la Facultad de Ciencias Sociales, 1994.
IV. LA ESTIMACIÓN DE UN ÍNDICE DE PTF

A. UNA APLICACIÓN EMPÍRICA: LA METODOLOGÍA DEL BLS

En lo que sigue, se discuten las posibilidades de aplicar una metodología similar a la de la Oficina de Estadísticas Laborales (BLS) de Estados Unidos para calcular la PTF para la industria uruguaya en su conjunto y para su desagregación a 2, 3 y 4 dígitos de la CIIU. Como se plantea en los trabajos de la BLS, el objetivo debe ser construir series en un marco conceptual consistente, que proviene de la teoría microeconómica de la empresa. La idea de este marco es evitar supuestos restrictivos en la agregación de las variables.

Esta Oficina es una de las principales fuentes de estadísticas laborales. A sus estadísticas de productividad parcial del trabajo ha ido agregando las estimaciones de la productividad multifactor o PTF. El índice se definía en un principio como el cambio anual en el producto, medido por el Valor Agregado, por unidad combinada de capital y trabajo.

Recientemente el BLS ha publicado estadísticas de productividad multifactor con una nueva metodología. El nuevo índice denominado KLEMS extiende los insumos considerados, incorporando además de capital (K) y trabajo (L), energía (E), materiales (M) y servicios (S). Con esta nueva definición el producto es medido a través del Valor Bruto de Producción. Como se señala en la propia publicación, las ventajas de este nuevo indicador sobre el anterior son: permite una mejor medida de los avances en la eficiencia productiva, pues capta las economías en el uso de materiales y otros insumos; se relaciona directamente con el precio del producto (el precio con el cual la empresa compite con otra) y no con un "deflactor implícito del valor agregado"; y, por último, provee un mejor entendimiento del uso de los factores primarios desde que toma en cuenta su relación con todos los precios y cantidades de los insumos.

El uso del VAB en muchos de los trabajos empíricos, ha sido justificado teóricamente según Diewert (1978) con la utilización de dos supuestos alternativos. Una opción, que evita la realización de supuestos restrictivos sobre la forma de la función de producción, es asumir que los precios de los productos e insumos intermedios varían proporcionalmente, en cuyo caso el valor agregado nominal deflactado puede usarse en sustitución del producto real. Otra alternativa es suponer que la función de producción agregada cumple f(K,L,M) = g[h(K,L),M], donde h(K,L) es el valor agregado real y M es el vector de insumos intermedios. Este supuesto de separabilidad implica fuertes restricciones sobre las elasticidades parciales de sustitución.

Como sostiene Diewert ambos supuestos parecen poco probables. En el primer caso la evolución del precio de la energía es un ejemplo importante de no cumplimiento de la proporcionalidad. En el segundo, si esa condición se cumple la elasticidad de sustitución entre energía y cualquier bien de capital o tipo de trabajo debería ser la misma. Esta restricción parece poco probable pues, por ejemplo, es esperable que la energía y ciertos servicios de capital sean complementarios y por tanto tengan elasticidad de sustitución negativa mientras

que la energía y los trabajadores no calificados sean sustitutos y por tanto presenten elasticidad de sustitución positiva. Este autor plantea que muchos de los estudios probablemente presenten sesgos por el tratamiento inadecuado de la energía, llegándose a preguntar incluso cuánto del "residuo" es debido al uso injustificado del valor agregado.

El índice de productividad calculado por la BLS es un índice de Törnqvist "encadenado". El encadenamiento (chain-linking) refiere a la opción de calcular la variación del índice respecto al año inmediatamente anterior y construir por tanto la variación en un período utilizando los índices intermedios. La otra alternativa para la construcción de series con índices bilaterales es el método de la "base fija" que implica el cálculo del índice de cada año comparándolo siempre con un mismo año base\(^1\). La elección del método del encadenamiento tiene la ventaja que evita la dificultades de los índices de "base fija" debido a la invención de nuevos productos y la obsolescencia de otros cuando se comparan períodos largos. Diewert argumenta también que la utilización del encadenamiento reduce las discrepancias entre las series construidas con distintos números índices.

1. El problema de la estimación del producto

Existen dos alternativas para medir el producto según sea el índice elegido. En el caso del índice de PTF clásico (considerados solamente trabajo y capital) el producto se debe medir con el Valor Agregado Bruto a precios constantes, mientras que para un índice tipo KLEMS la variable a considerar es el Valor Bruto de Producción a precios constantes\(^2\).

La forma más habitual de estimación del VAB a precios constantes es como resultado de una doble deflación: la diferencia entre el VBP y los insumos, ambos a precios constantes. Para el caso de la industria uruguaya se pueden obtener ambas series (VBP e insumos) de la Encuesta Industrial Anual (EIA) realizada por el INE, y como deflactores se dispone del Índice de Precios Mayorista (IPM) elaborado por el BCU y de un Índice de Precios de Insumos elaborado por Picardo y De León\(^3\). Para la segunda opción el producto se mide a través del VBP de la EIA deflactado por el IPM.

La mayoría de estas fuentes permiten obtener datos desagregados a nivel de rama 4 dígitos de la CIIU. Por lo tanto se elige este nivel de desagregación como base para el cálculo del índice de cantidad agregado, de toda la industria o a nivel de división (2 dígitos),

\(^1\) Una tercera alternativa para la construcción de series es el uso de índices multilaterales, que toman en cuenta la información de todo el período para para el cálculo del índice en cada año (ver Diewert, 1993). Los índices multilaterales han merecido recientemente mayor atención como forma más adecuada de calcular índices en estudios internacionales (ver por ejemplo Caves, Christensen y Diewert, 1982).

\(^2\) Al usar variables deflactadas por un índice de precios, se está utilizando un índice de cantidad implícito que, como se definió antes, es el que se obtiene de dividir el valor entre el índice de precios.

\(^3\) Trabajo presentado en el seminario "La industria ante la apertura" organizado por el Departamento de Economía de la Facultad de Ciencias Sociales, 1994.
considerando que la desagregación es suficientemente representativa de una producción homogénea. Si para obtener el índice de cantidad a nivel más agregado simplemente se suman los valores deflactados a 4 dígitos se obtiene un índice de cantidades de base fija. Esto se puede demostrar como sigue, donde \(Q' \) es la cantidad agregada obtenida como la suma de las cantidades por rama 4 dígitos \(Q'_{i} \).

\[
\frac{Q'}{Q'^{-1}} = \frac{\sum Q'_{i}}{\sum Q'^{-1}_{i}} = \frac{Q'_{1}}{\sum Q'^{-1}_{1}} + \ldots + \frac{Q'_{n}}{\sum Q'^{-1}_{n}}
\]

multiplicando para cada rama entre \(Q'^{-1}_{i}/Q'^{-1} \), obtenemos

\[
\frac{Q'}{Q'^{-1}} = \frac{Q'_{1}}{Q'^{-1}_{1}} \left(\frac{Q'^{-1}_{1}}{\sum Q'^{-1}_{1}} \right) + \ldots + \frac{Q'_{n}}{Q'^{-1}_{n}} \left(\frac{Q'^{-1}_{n}}{\sum Q'^{-1}_{n}} \right)
\]

por lo tanto se puede ver que el índice de variación de la cantidad agregada \(Q'/Q'^{-1} \) es igual al promedio ponderado de los índices de cada rama 4 dígitos, con las ponderaciones tomadas en el año base \((t-1)\). Para evitar las restricciones de un índice de base fija, los valores agregados se obtendrán usando la fórmula de agregación de Törnqvist, es decir la suma de los índices a 4 dígitos utilizando como ponderación el promedio de la participación de la rama en ambos períodos.

Eliminación de impuestos indirectos y subsidios. La medida correcta de la variación del producto debería eliminar los cambios que se derivan de los impuestos y subsidios, que se encuentran incluidos en el VBP. Lamentablemente no se dispone en la EIA de los datos de los impuestos y subsidios para el período anterior a 1988, la que sí esta disponible con la nueva encuesta que se realiza a partir de dicho año.

Transacciones intra-sector. Cuando un establecimiento provee de insumos a otro establecimiento de la misma industria, se produce una doble contabilidad de los datos con los que se construye la medida de productividad KLEMS: las transacciones entre establecimientos de la misma industria aparecen en igual magnitud en el numerador (producto) y en el denominador (insumos).

Para evaluar el efecto de la doble contabilidad en la medición de la PTF se puede analizar el siguiente ejemplo sencillo. Supongamos un sector con empresas totalmente integradas que obtienen un producto \(y \) utilizando trabajo \((x_{L}) \), capital \((x_{k}) \) y materia prima \((x_{1}) \). En este caso el cambio en la PTF se puede calcular como:

\[
\frac{\% \Delta T}{\% \Delta T^{*}} = \frac{\dot{y}}{y} - \frac{x_{L} \dot{x}_{L}}{x_{L} y} - \frac{x_{k} \dot{x}_{k}}{x_{k} y} - \frac{x_{1} \dot{x}_{1}}{x_{1} y}
\]

Si en cambio el sector se compone de 2 tipos de empresas una de las cuales a partir de la materia prima elabora un bien, \(x_{0} \), que es insumo intermedio para el segundo tipo de empresas que elaboran el bien final, en este caso el producto del sector se compone por la suma del bien final y del bien intermedio. Por lo tanto el cambio en la PTF se calcula como:
De esta forma, al incluir las transacciones intra-sector, la medida de la productividad depende del grado de integración vertical que presente el sector. Si este cambia en el tiempo, introducirá un sesgo en las tendencias que se obtengan del crecimiento de la productividad (menores grados de integración vertical dentro del sector provocan reducción en la medida de la productividad).

El BLS propone eliminar de las medidas del producto y de los insumos lo que corresponde a transacciones intrasectoriales, denominando a la medida así obtenida PTF "sectorial" (PTF5). Por último, es importante notar que eliminar las transacciones intrasectoriales implica una noción de producto que depende del nivel de agregación sectorial bajo estudio. Esto le otorga una racionalidad al uso de medidas basadas en el valor agregado para los sectores más agregados, mientras se expande el conjunto de insumos considerado cuando se estudian sectores a menor nivel de agregación.

En el caso uruguayo esta corrección no es posible al no disponerse de series sobre las transacciones intrasectoriales, aunque sí es posible, para el propio INE, discriminar los insumos que el sector compra a empresas del mismo sector dada la información solicitada en el formulario de la encuesta.

2. El problema de la estimación de los servicios de los factores

El insumo de capital se define como los servicios del conjunto de activos físicos. Un concepto central en las medidas de capital utilizadas por la BLS es el de stock de capital productivo o stock medido en unidades de eficiencia. La medida del capital productivo implica una agregación de activos de distintas generaciones, lo cual requiere datos históricos de la inversión y una función de "edad/eficiencia" que describe la oferta de servicios de cada activo en función de su edad.

El stock productivo de cada tipo de activo es calculado utilizando el método del inventario permanente, por el cual el stock al final de un período es igual a la suma ponderada de todas las inversiones pasadas. Las ponderaciones están dadas por la función de eficiencia que indica la cantidad de servicios que provee un activo de una edad dada respecto a los de
una activo nuevo del mismo tipo. El uso de funciones de eficiencia implica asumir que los servicios de un tipo particular de capital son función de su edad y que la función no depende de ningún otro factor y es fija en el tiempo.

Como la serie de stock productivo es una estimación "fechada" a fin de año, incluye todos los cambios ocurridos durante el año. Estos cambios no tienen un total impacto sobre el producto del año en cuestión, por tanto la BLS adopta como medida del insumo de capital la media aritmética del stock del año corriente y el stock del año previo. Los servicios del capital se suponen son proporcionales a este promedio anual del stock productivo del capital.

Por último la BLS agrupa las estimaciones de los stocks productivos de cada tipo de activo para obtener una medida agregada del insumo de capital. La agregación se realiza usando la fórmula de Törnqvist utilizando como ponderadores el "implicit rental price" o "user cost" (que reflejan la productividad marginal).

En el caso uruguayo, la información sobre inversión y capital es escasa. Para la economía en su conjunto el BCU brinda el dato de la formación bruta de capital fijo, desagregada en 3 tipos de activos: construcción, plantaciones y maquinaria y equipo. No se dispone de ninguna otra fuente de datos sobre inversión en forma más desagregada por sector.

El III Censo Económico Nacional es una de las pocas fuentes de datos de stock de capital e inversión para la industria. De esta se puede obtener el stock de capital para las ramas a 4 dígitos, tanto a valores de mercado como a valores fiscales. Un trabajo reciente de la CEPAL (1994) estima a partir de los datos de importación de bienes de capital una serie de inversión en maquinaria y equipo a nivel de grandes divisiones y por rama 4 dígitos para la industria. Partiendo de la estimación del stock de capital que arroja el Censo Económico de 1988 se construye una serie, por rama a 4 dígitos, por el método de inventario permanente.

Utilización de capacidad instalada. Al ser el capital un factor de producción cuasi-fijo, el servicio de capital utilizado en la producción no es proporcional al stock productivo de capital instalado. Una solución es corregir la medición del capital con datos de utilización de la capacidad instalada. En el caso uruguayo eso no es posible dado que se dispone de estimaciones de este tipo sólo para el año del Censo.

En el caso del factor trabajo, su servicio se identifica con el número de horas trabajadas por el personal ocupado total.

Nuevamente la fuente de información a nivel de la industria manufacturera a 4 dígitos es la EIA. Sin embargo, ésta proporciona sólo la cantidad de horas trabajadas por el personal obrero y la cantidad total de personas ocupadas, este último abierto en obreros, empleados y propietarios, socios o familiares. Al no preguntarse la cantidad de horas trabajadas por los...
empleados, no se dispone de la cantidad de horas totales trabajadas. Una aproximación al
total de horas trabajado se puede obtener asignando un número de horas de trabajo promedio
a los empleados y propietarios.

B. ESTIMACIÓN DE UN ÍNDICE DE PTF EN LA INDUSTRIA URUGUAYA

1. Antecedentes

Uno de los pocos cálculos encontrados para Uruguay es el realizado por Elías (1991) para el
conjunto de la economía en base a datos del Banco Mundial y para el período 1950-87. Los
resultados obtenidos indican que el reducido crecimiento del PBI en dicho período (0.8% a.a.)
fue realizado en base al crecimiento del empleo (0.6%) y a la mejora en la PTF (0.9%) que
compensaron la reducción del capital en el período (-1.2%). No se conocen estimaciones de
la PTF para la industria manufacturera uruguaya.

En general se ha utilizado en el análisis de la industria el indicador de productividad
parcial del trabajo obtenido como el cociente entre el índice de volumen físico y el índice de
horas trabajadas por obreros (ambas series elaboradas por el INE a partir de la Encuesta
Industrial Trimestral). Según este cálculo la productividad del trabajo ha crecido
sostenidamente en los últimos 10 años, lo que podría estar indicando una mejora en la
eficacia del sector industrial.

Erro (1994) analiza el efecto de las reformas recientes en la productividad de la mano
de obra. El trabajo encuentra, entre otros resultados, qué incrementos significativos de la
producción por hora trabajada están asociados tanto a dinamismo exportador como al
dinamismo de las importaciones.

2. Metodología y fuentes

Se calculan los índices de productividad parcial y la PTF para el conjunto del sector industrial
usando el Índice de Törnqvist. Se utilizan para ello las series por rama a 4 dígitos, de VBP,
VAB, CI y personal ocupado de la Encuesta Industrial Anual elaborada por el INE, y la serie
de stock de maquinaria y equipo estimada en Torello (1994). El VBP es deflactado por el IPM
y el VAB a precios constantes es obtenido por el método de la "doble deflación", como la
diferencia entre el VBP deflactado por el IPM y el CI deflactado por el índice de precios de
insumos elaborado por Picardo y De León. Las series de VBP, VAB y CI para el conjunto
de la industria son obtenidas a partir de la agregación de la información a 4 dígitos utilizando
el índice de Törnqvist. En el caso del personal ocupado y del capital, los agregados se
obtuvieron por la suma directa de las series a 4 dígitos.

En el caso del personal ocupado y del stock de capital se optó por realizar la
agregación a través de una suma directa de los datos de las ramas a 4 dígitos, lo que implica
el supuesto de que ambos factores son homogéneos al interior de la industria. En el caso del
consumo intermedio se optó por agregar con el índice de Törnqvist pues se consideró que la
rama a 4 dígitos brindaba una buena distinción por tipo de consumo.
La participación del capital en el ingreso se calculó como uno menos la participación del trabajo en un caso y menos la participación del trabajo y los insumos en el otro. Esta forma de cálculo implica utilizar la corrección propuesta por Hulten para el caso de un factor quasi-fijo (en este caso el capital). La validez de esta corrección depende de la existencia de rendimientos constantes a escala (ver punto II.B.2).

La información disponible permitió cubrir el período 1982-1992 dado que las series de precios y de stock de capital a 4 dígitos llegan hasta este último año. El conjunto de la industria excluye la rama 3530 (refinería de petróleo) así como algunas ramas que presentaron dificultades en la información, las que representan aproximadamente el 6% del VAB y del empleo entre 1988-1992.26/

De esta forma se estimaron 4 indicadores de productividad: dos indicadores de productividad parcial del trabajo, producción por persona ocupada (VBP/L) y de valor agregado por persona ocupada (VAB/L), y dos indicadores de PTF, uno a partir del VAB y del capital y el trabajo (KL), y otro con el VBP y capital, trabajo y consumo intermedio (KLI).

Las estimaciones realizadas se consideran preliminares pues admiten la mejora en el cálculo de algunas de las series. Entre las mejoras posibles a introducir se encuentran: i) el cálculo y estimación de los impuestos indirectos netos de subsidios que permitan una mejor estimación del valor bruto de producción y el valor agregado a costos de factores. Para el cálculo de la participación de los factores en la producción o el valor agregado se trabajó con una participación fija de los impuestos para todo el período (20% sobre el VAB y 8% sobre el VBP); ii) la desagregación del consumo intermedio en componentes más homogéneos, por lo menos como lo presenta la BLS en energía, servicios y materias primas, que permitan una deflación más rigurosa así como una mejor interpretación de los cambios en la TFP; iii) una estimación de las horas trabajadas por el total del personal ocupado, es decir incluyendo las horas trabajadas por los empleados.

Por otra parte las estimaciones de los niveles de producción y de utilización de insumos y factores en el período refieren a cambios en términos reales, los que no necesariamente reflejan cambios en la calidad de los mismos, para lo cual sería necesario estimar las cantidades de insumos y factores en unidades de eficiencia (tal como fue planteado en el punto II.A.2).

26/ Las ramas excluidas son: conservas de frutas y legumbres (3113), aceites (3115), molinos (3116), raciones (3122), otros artículos de papel (3419), vidrio (3620), metales no ferrosos (3720), herramientas manuales (3811), reparación de barcos (3841) y equipos científicos (3851).
3. La productividad parcial del trabajo

Gráfico 3
PRODUCTIVIDAD PARCIAL (I)
Índices 1982 = 100

Los cálculos de productividad habitualmente manejados refieren a estimaciones de la productividad parcial del trabajo, calculados a partir de las series de índice de volumen físico (IVF) y del índice de personal obrero ocupado (IPO) o de horas trabajadas (IHT) por los obreros. La evolución de los índices así elaborados muestran un crecimiento de la productividad en el período 1982-92 de un 24.5%, equivalente a una tasa de 2.2% a.a., que si bien es relativamente persistente desde 1983, es explicado principalmente por el crecimiento acelerado en los últimos 3 años (7.3% a.a. en 1989-92).27/

27/ La actualización de las series hasta 1995 permite comprobar que la productividad aparente del trabajo se mantuvo estable en el período 1993-94 a los niveles de 1992 y que tuvo un aumento significativo el último año (15%) lo que redondea un crecimiento a un ritmo acelerado, 6.6% a.a., para el período 1989-95.
El comportamiento del empleo (Gráfico 4) y de la producción (Gráfico 5) permiten reconocer dos períodos: entre 1983 y 1987 la productividad del trabajo crece en el marco de una recuperación de la actividad industrial que implicó un incremento de la producción superior al del empleo, a partir de 1988 el crecimiento del producto se detiene e incluso descende levemente acompañado por una fuerte caída del empleo que determina que la productividad del trabajo continúe creciendo.

Si bien el crecimiento de la productividad aparente estaría indicando un proceso de importante mejora en la eficiencia del trabajo en el sector industrial, se ha planteado que el incremento de este indicador estaría reflejando también la incidencia de otros fenómenos. Respecto al primer período se ha argumentado que el crecimiento de la productividad parcial ha sido explicado en parte por un incremento en la utilización de la capacidad instalada. En este sentido, según estimaciones de Torello (1993) la capacidad ociosa para el conjunto de la economía en el período 1982-84 promedió un 20% reduciéndose a casi un 8% en el período 1985-89 y alcanzando casi la utilización plena en el período 1990-92*. Por otra parte, se ha sugerido que el crecimiento entre 1989 y 1992 puede responder a otras razones, tales como la tercerización de actividades y la incorporación de insumos con mayor elaboración. Al respecto debe tenerse en cuenta que al utilizarse un indicador basado en la producción (IVF) los incrementos en el consumo intermedio se recogen como mejoras en la productividad.

*Corresponde a estimaciones de la capacidad instalada o producto potencial de la economía a partir de un modelo agregado y utilizando como método de estimación la programación lineal.
Para intentar distinguir estos fenómenos es necesario construir un indicador de productividad del trabajo basado en el valor agregado. En el Gráfico 6 se presentan ambos índices de productividad parcial del trabajo construidos usando las series de producción y empleo elaboradas en el presente trabajo. El índice VBP/L es conceptualmente similar al indicador más comúnmente utilizado IVF/IHT.

El valor agregado por persona ocupada muestra una tasa de crecimiento anual similar a la del valor bruto por persona ocupada hasta 1987, pero a partir de dicho año la evolución de ambas series se diferencia. Como se puede apreciar en el Gráfico 7 a partir de dicho año se produce una caída en el valor agregado industrial que se extiende hasta 1990, estabilizándose posteriormente. Esta caída del valor agregado es significativamente más pronunciada que la disminución del valor bruto de producción en dicho período, operándose por tanto una caída en el porcentaje de valor agregado respecto al valor bruto de producción (aproximadamente un 10% entre 1987 y 1988) manteniéndose luego en estos niveles.

\[V_A^VBP\] Según los datos de la Encuesta Industrial Anual la participación del VAB a precios corrientes en el VBP se redujo también aproximadamente un 10% entre ambos años (pasó del 44.5% al 39.7%). Sin embargo a precios corrientes a partir de 1990 el VAB a incrementado nuevamente su participación.
El crecimiento del consumo intermedio y la reducción del empleo que se producen a partir de 1987 parecen estar respaldando la hipótesis de que es en dicho período que se inicia por lo menos uno de los dos procesos señalados anteriormente, tercierización de actividades y/o utilización de insumos importados más elaborados.

Por último se debe destacar que a partir del 90 tanto el valor agregado como el valor bruto de producción por persona ocupada muestran un importante crecimiento, obedeciendo principalmente a la aceleración en la caída del empleo a partir del 89. Según los datos de la EIT esta tendencia se mantiene hasta 1995.

4. La PTF

El índice de PTF considerando capital y trabajo presenta un crecimiento mayor que la productividad parcial del trabajo, considerando el crecimiento "punta a punta" de todo el período (ver Gráfico 8). La PTF así medida puede ser interpretada como la productividad del trabajo corregida por las variaciones de la cantidad de capital por trabajador o, lo que es lo mismo, las variaciones en la intensidad de uso del factor capital (recordar ecuación (7)).

El mayor crecimiento de la productividad global respecto a la productividad del trabajo en el período 1982-87 se explica por una variación negativa del capital por trabajador en el periodo. La importante reducción en la intensidad del capital, un 25%, se explica por el efecto combinado del crecimiento en el personal ocupado y la reducción del stock de capital. Vale recordar que precisamente una limitación de la serie de capital es que no recoge las variaciones en la utilización de la capacidad instalada, por lo que esa caída en el stock debió compensarse en parte por una mayor uso de la capacidad instalada.
Entre 1987 y 1990 ambos indicadores de productividad presentan una evolución descendente similar debido a la caída del valor agregado. Los dos últimos años considerados muestran un importante crecimiento de la productividad especialmente de la productividad del trabajo lo que en gran parte obedece al aumento del capital por persona ocupada (Gráfico 9). El incremento de la relación capital-trabajo responde principalmente a la reducción del personal ocupado y a una disminución en el ritmo de reducción del stock de capital, que incluso crece en el último año.

El resultado que se obtiene cuando se considera entre los factores de producción la utilización de insumos intermedios es que la productividad global muestra un muy leve crecimiento en todo el período (la tasa se ubica en un 0.4% a.a.). Ver Gráfico 10. Este comportamiento parece estar explicado por un importante crecimiento en el consumo intermedio, la relación CI/VBP a precios constantes crece un 16% entre 1982 y 1987, manteniéndose en ese nivel en los años siguientes, lo que se puede deber a procesos de tercercrización (sustitución de mano de obra por contratación de servicios) o de incorporación de insumos importados con mayor grado de elaboración sustituyendo capital y mano de obra. El crecimiento en el consumo intermedio puede originarse también en un aumento de la desintegración vertical al interior del sector como se comentó en el punto IV. A.
5. Productividad y especialización

Para el análisis del comportamiento de la productividad al interior de la industria se partió de los agrupamientos utilizados en Torello (1994) que agrupan las ramas a 4 dígitos de la industria según su especialización. El agrupamiento fue realizado en base a la participación de las importaciones en la oferta total y a la participación de las exportaciones en la demanda total para cada rama industrial. La aplicación de un análisis de conglomeración para 1990 arrojó como resultado que en el grupo de exportadoras fuertes se incluyeran la Industria Frigorífica, Elaboración de pescados, Lavandería, hilandería y tejeduría de lana y algodón, Curtiembres y Marroquinería, y como exportadoras moderadas Fabricación de lácteos, Azúcar, Vestimenta, Calzado, Pinturas, Cervecería y Cerámica. En los agrupamientos competitivos de importados, por su parte, las consideradas importadoras fuertes fueron algunas actividades de la química (Química básica y Fabricación de resinas y fibras) y la producción de maquinaria; como importadoras moderadas altas se consideraron entre otros la Industria automotriz; y como importadoras moderadas bajas se incluyeron entre otros la Fabricación de otras bebidas alcohólicas, Fabricación de papel, Abonos y plaguicidas, Industria farmacéutica, Neumáticos, Materiales de electricidad, Otros productos de metal. Por último, dentro de las actividades manufactureras consideradas no especializadas se agruparon las ramas de Panaderías y fidecerías, la Industria vitivinícola, Imprentas, Plásticos y Perfumería y cosméticos entre otros.\(^30/\)

\(^30/\) Este trabajo utilizó los agrupamientos surgidos del análisis de conglomeración realizado por Caristo y Patrón en "Especialización de la industria manufacturera en el 90", Departamento de Economía, Facultad de Ciencias Sociales, 1994.
De acuerdo al Cuadro 1 la productividad aparente en términos del VBP crece para todos los agrupamientos en forma sostenida para todo el período, a excepción de los grupos de actividades exportadoras fuertes y no especializadas los que presentan una evolución menos regular al mismo tiempo que hacia el final del período muestran un porcentaje menor de crecimiento. La evolución en términos del VAB confirma la excepcionalidad de estos dos agrupamientos ya que son los únicos que presentan una caída del valor agregado per cápita en niveles significativos.

Cuadro 1

EVOLUCIÓN DE LA PRODUCTIVIDAD APARENTE DEL TRABAJO (VBP/L) SEGÚN ESPECIALIZACIÓN

<table>
<thead>
<tr>
<th>Año</th>
<th>Fuertes</th>
<th>Moderadas</th>
<th>Fuertes</th>
<th>Moderadas altas</th>
<th>Moderadas bajas</th>
<th>NO ESPECIALIZADAS</th>
<th>TOTAL INDUSTRIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1983</td>
<td>128.8</td>
<td>100.0</td>
<td>90.8</td>
<td>88.8</td>
<td>108.2</td>
<td>91.7</td>
<td>107.2</td>
</tr>
<tr>
<td>1984</td>
<td>99.2</td>
<td>105.7</td>
<td>93.7</td>
<td>119.7</td>
<td>115.1</td>
<td>90.4</td>
<td>98.5</td>
</tr>
<tr>
<td>1985</td>
<td>101.3</td>
<td>100.8</td>
<td>108.8</td>
<td>123.2</td>
<td>126.1</td>
<td>86.9</td>
<td>98.2</td>
</tr>
<tr>
<td>1986</td>
<td>95.2</td>
<td>106.8</td>
<td>108.8</td>
<td>122.6</td>
<td>145.1</td>
<td>89.3</td>
<td>102.5</td>
</tr>
<tr>
<td>1987</td>
<td>102.5</td>
<td>108.9</td>
<td>100.0</td>
<td>109.5</td>
<td>151.1</td>
<td>95.1</td>
<td>111.2</td>
</tr>
<tr>
<td>1988</td>
<td>103.4</td>
<td>114.8</td>
<td>165.0</td>
<td>190.5</td>
<td>148.3</td>
<td>94.7</td>
<td>112.3</td>
</tr>
<tr>
<td>1989</td>
<td>100.5</td>
<td>118.8</td>
<td>164.2</td>
<td>196.4</td>
<td>168.5</td>
<td>99.3</td>
<td>114.0</td>
</tr>
<tr>
<td>1990</td>
<td>96.8</td>
<td>118.3</td>
<td>221.8</td>
<td>188.7</td>
<td>154.4</td>
<td>97.6</td>
<td>113.1</td>
</tr>
<tr>
<td>1991</td>
<td>99.3</td>
<td>116.1</td>
<td>204.6</td>
<td>206.7</td>
<td>164.9</td>
<td>105.4</td>
<td>114.3</td>
</tr>
<tr>
<td>1992</td>
<td>113.8</td>
<td>133.6</td>
<td>184.0</td>
<td>206.9</td>
<td>152.6</td>
<td>112.6</td>
<td>125.8</td>
</tr>
</tbody>
</table>

La estimación de la PTF por agrupamiento según especialización (Cuadro 2) arroja resultados que evidenciarían una mejora de la productividad en los sectores que han enfrentado mayores cambios en su exposición competitiva al interior de la industria. Se trata de las actividades moderadamente exportadoras y el conjunto de las competitivas de importados. En el primer caso se trata de un conjunto de ramas que fundamentalmente exportan a la región y, por lo tanto, están sometidas a un patrón de comercio intrarrama en el marco de un cronograma de integración regional. Y en el segundo caso se trata de las actividades más afectadas por la desgravación arancelaria unilaterales que operó en la economía. Ahora bien, el proceso por el cual se dio dicho incremento es diferente para cada uno de estos agrupamientos. En el caso de los sectores moderadamente exportadores el aumento en la productividad habría operado a partir de un incremento en el valor agregado generado (crece en el período a una tasa de casi el 8% a.a.) sin un proceso de aumento en el stock de capital y con un muy reducido aumento de la mano de obra (poco más de 1% a.a. en el período).

En el caso de los agrupamientos competitivos de importaciones los clasificados como moderados, presentan aumentos en el valor bruto asociados a fuertes caídas en el stock de capital y a significativas caídas en el empleo acompañadas de moderados aumentos en el consumo intermedio. En estos sectores parece claro el aumento de la productividad en base a mejoras de gestión en el uso de los factores. El cierre de empresas ineficientes debe haber contribuido al resultado que se observa a nivel agregado. Por su parte, el sector fuertemente competitivo de importadores presenta un aumento de productividad menor al de los agrupamientos moderados (ver Cuadro 2) el que se asocia a una caída en el valor agregado generado asociada a una intensificación en el uso del factor capital (el stock permanece casi constante, crece a una tasa del 0.1% a.a., en tanto que el empleo cae a una tasa de casi el 5% en el período).
Cuadro 2

EVOLUCIÓN DE LA PRODUCTIVIDAD TOTAL DE FACTORES
SEGÚN ESPECIALIZACIÓN
Indice de Tornqvist - Base 1982 = 100

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPORTADORAS</td>
<td></td>
</tr>
<tr>
<td>Fuertes</td>
<td>100.0</td>
<td>108.0</td>
<td>86.9</td>
<td>95.0</td>
<td>97.0</td>
<td>87.5</td>
<td>76.5</td>
<td>78.1</td>
<td>70.8</td>
<td>72.4</td>
<td>75.0</td>
</tr>
<tr>
<td>Moderadas</td>
<td>100.0</td>
<td>107.6</td>
<td>109.3</td>
<td>108.7</td>
<td>116.8</td>
<td>121.3</td>
<td>118.7</td>
<td>117.1</td>
<td>118.8</td>
<td>119.3</td>
<td>121.8</td>
</tr>
<tr>
<td>IMPORTADORAS</td>
<td></td>
</tr>
<tr>
<td>Fuertes</td>
<td>100.0</td>
<td>90.2</td>
<td>95.7</td>
<td>101.6</td>
<td>116.9</td>
<td>128.5</td>
<td>124.8</td>
<td>133.3</td>
<td>126.0</td>
<td>131.6</td>
<td>130.4</td>
</tr>
<tr>
<td>Moderadas altas</td>
<td>100.0</td>
<td>91.1</td>
<td>99.6</td>
<td>110.6</td>
<td>138.0</td>
<td>175.4</td>
<td>162.5</td>
<td>162.6</td>
<td>169.7</td>
<td>174.7</td>
<td>177.3</td>
</tr>
<tr>
<td>Moderadas bajas</td>
<td>100.0</td>
<td>104.5</td>
<td>106.8</td>
<td>115.3</td>
<td>127.7</td>
<td>143.5</td>
<td>143.3</td>
<td>141.4</td>
<td>147.1</td>
<td>149.5</td>
<td>152.5</td>
</tr>
<tr>
<td>NO ESPECIALIZADAS</td>
<td>100.0</td>
<td>100.6</td>
<td>104.3</td>
<td>99.1</td>
<td>101.9</td>
<td>107.5</td>
<td>105.8</td>
<td>110.4</td>
<td>113.7</td>
<td>115.9</td>
<td>109.0</td>
</tr>
<tr>
<td>TOTAL INDUSTRIA</td>
<td>100.0</td>
<td>101.2</td>
<td>96.0</td>
<td>99.9</td>
<td>106.0</td>
<td>108.3</td>
<td>101.8</td>
<td>103.0</td>
<td>101.1</td>
<td>102.9</td>
<td>103.6</td>
</tr>
</tbody>
</table>

El menor aumento en la productividad total lo presenta el agrupamiento de actividades clasificadas como no especializadas. Se trata éste de un agrupamiento que muestra una leve caída en el valor bruto de producción acompañada por una caída relativamente mayor en los factores de producción, trabajo y capital, particularmente en este último. El resultado de este proceso es un aumento en la productividad global, pero una significativa disminución en el valor agregado generado (-3.1% a.a.).

Del conjunto de resultados se destaca el que arroja el agrupamiento de actividades fuertemente exportadoras, al que pertenecen, tal como ya fue señalado, las actividades manufactureras que responden por las exportaciones denominadas tradicionales (frigoríficos, tops y algunas manufacturas de cuero). Este agrupamiento presenta una caída en la productividad en forma casi persistente en todo el período. Este resultado se asocia a una caída en el valor bruto de producción a una tasa de 1% a.a. una sustitución de mano de obra por capital e insumos (el stock de este factor crece a la misma tasa en que disminuye el empleo, 2.2% a.a. y el consumo intermedio crece a una tasa del 3% a.a.). En este caso no sólo disminuye la productividad global sino que además es el sector que muestra la mayor contracción en el valor agregado.31/.

En síntesis, el leve aumento que se observa a nivel agregado para el sector manufacturero de su productividad total de factores es el resultado de fuertes incrementos en los sectores que experimentaron mayores modificaciones en su contexto competitivo, a los que se opuso la caída de la productividad en los sectores exportadores tradicionales. En el marco de esta aproximación "cuantitativa", el aumento de la productividad total a nivel agregado operó en base a una fuerte reducción en el empleo no asociada a un importante proceso inversor sino más bien a cambios en el proceso productivo que se reflejan fundamentalmente en el mayor peso del consumo intermedio en el vector del valor bruto de producción. La constatación de si este fenómeno obedece principalmente a procesos de externalización de actividades, a compra de insumos importados con mayor valor agregado o a procesos de desintegración vertical al interior de la industria manufacturera, exigiría un análisis más desagregado de cada uno de los componentes del valor bruto industrial.

31/ Esta caída del valor agregado está principalmente asociada a una reducción en el valor agregado del sector frigorífico.
El objetivo es determinar la forma de 2 funciones, \(O(p^0,p^1,q^0,q^1) \) y \(P(p^0,p^1,q^0,q^1) \), de manera que descompongan el cambio en el valor entre dos períodos en un cambio en los precios y en un cambio en las cantidades. De esta condición se deriva que cuando uno de los dos índices es determinado, el otro queda definido implícitamente.

Supondremos que todos los componentes de los vectores de cantidad y precio son estrictamente positivos para ambos períodos. Las propiedades (o tests) están planteadas respecto al índice de precios.

1. **Signo:** El índice debe ser positivo, es decir \(P(p^0,p^1,q^0,q^1) > 0 \).

2. **Continuidad:** debe ser una función continua de sus argumentos.

3. **Identidad:** si los precios de todos los bienes permanecen constantes durante ambos períodos, entonces el índice de precio debe ser igual a 1. \(P(p,q,q) = 1 \).

4. **Test de las cantidades constantes:** si las cantidades son constantes durante los dos períodos el índice de precios debe ser igual al cambio en el gasto. \(P(p^0,p^1,q,q) = p^1q/p^0q \).

Los cinco tests siguientes son los de proporcionalidad e invarianza, los cuatro primeros son conocidos también como tests de homogeneidad:

5. **Proporcionalidad en los precios corrientes** u homogeneidad de grado 1 en los precios corrientes: Si todos los precios del período 1 son multiplicados por un número positivo \(b \), entonces el nuevo índice de precios debe ser \(b \) veces el viejo índice. \(P(p^0, bp^1, q^0, q^1) = P(p^0, p^1, q^0, q^1) \).

6. **Proporcionalidad inversa en los precios base** u homogeneidad de grado menos 1 en los precios base: Si todos los precios del período 0 son multiplicados por un número positivo \(b \), el nuevo índice de precios debe ser igual al viejo dividido \(b \). \(P(bp^0, p^1, q^0, q^1) = P(p^0, p^1, q^0, q^1)/b \).

7. **Invarianza a cambios proporcionales en las cantidades corrientes** u homogeneidad de grado cero en las cantidades corrientes: Si todas las cantidades del período 1 son multiplicadas por el número positivo \(b \) entonces el índice de precios permanece incambiado. \(P(p^0, q^0, bq^1) = P(p^0, p^1, q^0, q^1) \).

8. **Invarianza a cambios proporcionales en las cantidades base** u homogeneidad de grado cero en las cantidades del período base: Si todas las cantidades del período 0 son multiplicadas por un número positivo \(b \) entonces el índice de precios debe permanecer incambiado. \(P(p^0, q^0, bq^1) = P(p^0, q^0, q^1) \).

9. **Invarianza a cambios en la unidad de medida** o test de conmensurabilidad: El índice de precios no debe cambiar si las unidades de medición de cada bien son cambiadas. \(P(bp^0, bp^1, b^2 q^1, b^2 q^1) = P(p^0, p^1, q^1, q^1) \).
Los siguientes cuatro test son conocidos como test de reversibilidad, los últimos dos (12 y 13) son más controvertidos, pues no parecen ser consistentes con la aproximación económica a la teoría de los números índices:

10. **Reversibilidad en los bienes** o invarianza a cambios en el orden de los bienes: Si el orden de los bienes es cambiado el valor del índice de precios permanece incambiado. Siendo w una permutación de p y x la misma permutación de los componentes de q, entonces:
 \[P(p^0, p^1, q^0, q^1) = P(w^0, w^1, x^0, x^1). \]

11. **Reversibilidad en el tiempo**: Si los datos del período 0 y 1 son intercambiados entonces el índice de precios resultante debe ser igual al recíproco del índice original.
 \[P(p^1, p^0, q^1, q^0) = 1/P(p^0, p^1, q^0, q^1). \]

12. **Reversibilidad en las cantidades**: Si los vectores de cantidad de los dos períodos son intercambiados entonces el índice de precios debe permanecer incambiado, es decir las cantidades usadas como ponderadores deben entrar en la fórmula de forma simétrica.
 \[P(p^0, p^1, q^0, q^1) = P(p^1, p^0, q^0, q^1). \]

13. **Reversibilidad en los precios**: Es análogo al test anterior pero para los índices implícitos de cantidades.
 \[Q(p^0, p^1, q^0, q^1) = Q(p^1, p^0, q^0, q^1). \]

Los próximos 3 test son los test del valor medio:

14. **Valor medio del índice de precios**: El índice de precios debe ubicarse entre el mínimo y el máximo ratio de los precios de cada bien.
 \[\min \{p^i/p^0\} \leq P(p^0, p^1, q^0, q^1) \leq \max \{p^i/p^0\}. \]

15. **Valor medio del índice de cantidades**: Es análogo al anterior para el índice implícito de cantidades.
 \[\min \{q^i/q^0\} \leq Q(p^0, p^1, q^0, q^1) \leq \max \{q^i/q^0\}. \]

16. **Franja Paasche-Laspeyres**: El índice de precios debe ubicarse en el rango definido por el valor de los índices de precios de Paasche y de Laspeyres.

Las siguientes 4 propiedades son los test de monotonicidad:

17. **Monotonicidad en los precios corrientes**: El índice debe ser creciente en los precios del período 1. \[P(p^0, p^1, q^0, q^1) < P(p^0, p^1, q^0, q^1) \text{ si } p^1 < p. \]

18. **Monotonicidad en los precios base**: El índice de precios debe ser decreciente en los precios del período 0. \[P(p^0, p^1, q^0, q^1) > P(p^0, p^1, q^0, q^1) \text{ si } p^0 < p. \]

19. **Monotonicidad en las cantidades corrientes**: El índice implícito de cantidades debe ser creciente en las cantidades del período 1. \[Q(p^0, p^1, q^0, q^1) < Q(p^0, p^1, q^0, q^1) \text{ si } q^1 < q. \]

20. **Monotonicidad en las cantidades base**: El índice implícito de cantidades debe ser decreciente en las cantidades del período 0. \[Q(p^0, p^1, q^0, q^1) > Q(p^0, p^1, q^0, q^1) \text{ si } q^0 < q. \]

Los anteriores son el subconjunto de 20 test que Diewert demuestra cumple el índice ideal de Fisher. Otros test propuestos como deseables son:

52
21. Invarianza respecto a la base: El nivel de precios de un período t respecto a un período s debe mantenerse incambiado aunque se cambie el período tomado como base.
\[\frac{P(p^0, p^s, q^0, q^s)}{P(p^0, p^s, q^0, q^t)} = \frac{P(p^t, p^t, q^t, q^t)}{P(p^t, p^t, q^t, q^t)}. \]

22. Circularidad: El nivel de precios del período 3 respecto al nivel de precios del período 1 computado de "un paso" usando una fórmula bilateral, debe ser igual al resultado de calcular dicho índice como el producto del nivel de precios del período 2 respecto al período 1 por el nivel de precios del período 3 respecto al período 2.
\[P(p^1, p^2, q^1, q^2)P(p^2, p^2, q^2, q^3) = P(p^1, p^1, q^1, q^3). \]

El siguiente test formulado por Walsh implica el cumplimiento simultáneo del test de circularidad (22) y el test de reversión en el tiempo (11), se enuncia igual dado su uso en la evaluación del método del encadenamiento.

23. Identidad multiperíodo: \(P(p^1, p^2, q^1, q^2)\) \(P(p^2, p^3, q^2, q^3)\) \(P(p^3, p^1, q^3, q^1) = 1. \)

Propiedades en que fallan los índices de precios de Laspeyres, Paasche, Törnqvist y el índice implícito de Törnqvist

<table>
<thead>
<tr>
<th>Propiedades</th>
<th>Laspeyres</th>
<th>Paasche</th>
<th>Törnqvist</th>
<th>Törnqvist implícito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop. 1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 5</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 7</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 8</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 9</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 10</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 11</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 12</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 13</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 14</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 15</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 16</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 17</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 18</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 19</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop. 20</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bibliografía

