UNA REVISIÓN CRÍTICA DE LOS MÉTODOS DE SERIES DE TIEMPO Y DE DATOS DE PANEL APLICADOS AL CASO DE LA HIPÓTESIS DE EXPORT-LED GROWTH
ÍNDICE

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>3</td>
</tr>
<tr>
<td>I. INTRODUCCIÓN</td>
<td>5</td>
</tr>
<tr>
<td>II. ANTECEDENTES TEÓRICOS</td>
<td>8</td>
</tr>
<tr>
<td>III. ENFOQUE ECONOMÉTRICO</td>
<td>10</td>
</tr>
<tr>
<td>1. Pruebas de raíces unitarias</td>
<td>11</td>
</tr>
<tr>
<td>2. Pruebas de cointegración en datos de panel</td>
<td>18</td>
</tr>
<tr>
<td>3. Métodos de estimación en paneles cointegrados</td>
<td>20</td>
</tr>
<tr>
<td>IV. MODELO EMPÍRICO A ESTIMAR</td>
<td>22</td>
</tr>
<tr>
<td>V. DATOS Y RESULTADOS EMPÍRICOS</td>
<td>24</td>
</tr>
<tr>
<td>1. Pruebas para detectar la existencia de raíces unitarias</td>
<td>24</td>
</tr>
<tr>
<td>2. Estimación de las regresiones de cointegración</td>
<td>28</td>
</tr>
<tr>
<td>3. Pruebas de cointegración</td>
<td>33</td>
</tr>
<tr>
<td>VI. ¿POOLING O NO POOLING?</td>
<td>38</td>
</tr>
<tr>
<td>VII. CONCLUSIONES</td>
<td>44</td>
</tr>
<tr>
<td>BIBLIOGRAFÍA</td>
<td>53</td>
</tr>
</tbody>
</table>
ABSTRACT

The main objective of this document is to show the application of modern econometric techniques, and compare the results obtained from non-stationary time series technique against those from the non-stationary panel date technique applied to a specific macroeconomic problem such as the export-led growth hypothesis.

From the results of the country-by-country analysis we found evidence in favor of the export-led growth hypothesis only for 5 countries out of 40. On the other hand, using panel data techniques we found that the hypothesis holds for our sample. However, this result is valid once we impose a homogeneity assumption on the cointegration coefficients. These findings suggest caution, at least in the derivation of political economy recommendations respect to the export-led growth hypothesis.
RESUMEN

El principal objetivo del documento es ilustrar la aplicación de técnicas econométricas modernas, comparar específicamente los resultados que arrojan las técnicas de series de tiempo no estacionarios contra los de datos de panel no estacionarios, a un problema macroeconómico específico como es el caso de la hipótesis del crecimiento liderado por exportaciones (HCELE).

En los resultados del análisis por país solamente se encuentra evidencia a favor de la hipótesis para cinco de los 40 países considerados. Por otra parte, las estimaciones usando técnicas de datos de panel, que pueden brindar resultados más robustos bajo ciertas condiciones en comparación con las series de tiempo, apuntan a su cumplimiento; sin embargo, la evidencia a favor de la hipótesis se presenta una vez que se imponen supuestos de homogeneidad sobre los coeficientes de cointegración. Los hallazgos sugieren cautela, al menos en la derivación de lineamientos de política económica respecto de la HCELE.
I. INTRODUCCIÓN

El avance en las técnicas econométricas en los últimos años ha sido verdaderamente sorprendente y ha permitido reexaminar ciertos fenómenos económicos de manera mas profunda. El estudio que aquí se desarrolla se concentra en el análisis de la hipótesis del “crecimiento económico liderado por exportaciones” (export-led growth) mediante distintas técnicas econométricas.

Desde hace cuatro décadas numerosos estudios habían tratado de encontrar evidencia que apoyara o rechazara la hipótesis de que el crecimiento de las exportaciones es un factor importante para el crecimiento económico; con los avances en el desarrollo de la econometría el tipo de técnicas elegidas para demostrar esta hipótesis ha variado considerablemente con el paso de los años. Las técnicas econométricas más utilizadas han sido las de series de tiempo no estacionarias y, más recientemente, aunque aún no en forma generalizada, la de datos de panel no estacionarios.

El principal objetivo del documento es ilustrar la aplicación de técnicas econométricas modernas, comparar específicamente los resultados que arrojan las técnicas de series de tiempo no estacionarios contra los de datos de panel no estacionarios, a un problema macroeconómico específico como es el caso de la hipótesis del crecimiento liderado por exportaciones. Para tal propósito se utiliza información de 40 países en desarrollo durante el periodo 1960-2003; el modelo propuesto considera al PIB real neto de exportaciones, por una parte, y a la formación bruta de capital, fuerza laboral total y exportaciones reales de bienes y servicios, por el lado de las variables independientes.

El modelo se estima de dos maneras: la primera utiliza series de tiempo por países y la segunda se realiza con base en datos panel. Usando ambos procedimientos se brinda una evaluación extensiva y crítica de ambos tipos de estimaciones para el caso de la hipótesis del export-led growth. Específicamente, mientras que ambos enfoques sugieren que la variable PIB neta de exportaciones, la formación bruta de capital, la fuerza laboral y las exportaciones reales no son estacionarias, solamente las estimaciones usando técnicas de datos de panel apoyan el cumplimiento de la hipótesis del export-led growth; sin embargo debe señalarse que en ambos tipos de estimaciones, la variable con mayor peso (en términos de valor de coeficiente) en el modelo es la de formación bruta de capital; también debe señalarse que en la investigación se encuentra que la importancia de la variable exportaciones ha venido disminuyendo (en términos de valor) a partir de finales de la década de los noventa y lo contrario ha sucedido con el valor del coeficiente asociado a la formación bruta de capital.

El documento comprende seis capítulos, incluida esta introducción, y contiene un capítulo más de conclusiones. En el segundo capítulo se abordan de manera breve los antecedentes teóricos de la hipótesis del export-led growth. Posteriormente se establece el enfoque econométrico de esta investigación en el capítulo III; en especial se trata de brindar los elementos técnicos necesarios para entender la aplicación empírica de las pruebas econométricas en el contexto de la hipótesis que concierne a esta investigación.
En el capítulo IV se especifica el modelo a estimar. Por su parte, el quinto capítulo da cuenta de los datos empleados para llevar a cabo la estimación (40 países en desarrollo analizados durante el período 1960-2003) y presenta los resultados empíricos.

Posteriormente, se aborda la cuestión de si resulta apropiado apilar o no (pooling); así, se encuentra que los datos rechazan la hipótesis de homogeneidad de que todos los coeficientes son iguales entre los países. Sin embargo, también se muestra que las estimaciones en datos de panel generan mejores pronósticos, especialmente en un horizonte de largo plazo. Se llega a la conclusión de que es probable encontrar evidencia a favor del cumplimiento de la hipótesis del export-led growth usando datos de panel. Finalmente, en el capítulo VII se reportan las conclusiones de la investigación.

El documento concluye señalando que los resultados difieren según la técnica aplicada. Para el caso de las series de tiempo no estacionarias, sólo en 12 países se encuentra un coeficiente positivo para la variable asociada a las exportaciones y, dentro de este grupo, únicamente seis naciones tienen una estimación del coeficiente positivo y estadísticamente significativa al nivel del 5% (Bangladesh, Camerún, Côte d'Ivoire, Gabón y, en el margen, Guatemala). Así, en el análisis de país por país solamente se encuentra evidencia a favor de la hipótesis de export-led growth para cinco de los 40 países considerados. Por otra parte, los resultados de las estimaciones usando técnicas de datos de panel, las cuales pueden brindar resultados más robustos bajo ciertas condiciones en comparación con las series de tiempo, apuntan al cumplimiento de la hipótesis de export-led growth para el grupo de países considerados durante el período 1960-2003; sin embargo, se debe señalar que la evidencia a favor de la hipótesis se presenta una vez que se imponen supuestos de homogeneidad sobre los coeficientes de cointegración. Los hallazgos sugieren cautela, al menos en la derivación de lineamientos de política económica respecto de la hipótesis en cuestión.

Finalmente, es conveniente mencionar también dos debilidades del análisis econométrico y que serán objeto de investigación en un futuro cercano; en primer lugar, en la estimación se incluye como variable independiente a las exportaciones totales de bienes y servicios; vale decir que no todos los tipos de productos (y servicios exportados) pueden promover el crecimiento económico; sin embargo, para los 40 países involucrados en la muestra no fue posible encontrar información homogénea que desagregara a las exportaciones por sectores o por actividad económica por lo que el análisis se lleva a cabo en términos de exportaciones reales de bienes y servicios. Asimismo, no fue posible hallar una variable homogénea adecuada para la fuerza laboral calificada (o capital humano) para los países incluidos en la muestra; el proxy que se utiliza (fuerza laboral total) probablemente no sea el más adecuado.

En segundo lugar, en el análisis econométrico se utilizaron datos que cubrían el período 1960-2003; es un hecho que durante estos años las economías en desarrollo incluidas en la muestra sufrieron cambios estructurales derivados de cambios en la política económica o por otras razones que efectivamente provocaron cambios en la estructura de su economía. Debe señalarse que en esta investigación no se dejó completamente fuera este aspecto; recuérdese que a través de las regresiones móviles o roladas se mostró cómo han variado los valores de los coeficientes en los distintos períodos y cómo la importancia de las exportaciones en la promoción del crecimiento económico ha venido disminuyendo a partir de finales de los años noventa. La razón por la cual un análisis de cambios estructurales dentro del contexto de datos de panel no
estacionarios está pendiente, es básicamente porque su desarrollo teórico y aplicación empírica son de muy reciente difusión. Baste señalar que documentos publicados utilizando estas técnicas han comenzado a aparecer en la segunda mitad de la década actual. Sin embargo, en un futuro cercano este análisis puede ser incorporado en el contexto de la hipótesis del export-led growth.
II. ANTECEDENTES TEÓRICOS

En la literatura sobre el tema se señala que las razones por las que el aumento de las exportaciones impacta positivamente en el crecimiento económico son principalmente las siguientes (CEPAL, 2004):

1) La generación de divisas que permite adquirir las importaciones necesarias para la expansión económica (la restricción externa).

2) La reasignación de recursos hacia actividades y empresas de mayor productividad, con el consecuente incremento de la productividad media de la economía.

3) La existencia de un mayor contacto con la economía internacional y con las exigencias de competitividad que enfrentan las actividades exportadoras y sus proveedores (externalidades positivas). Este efecto será mayor cuanto más diferenciado sea el producto y mayor sea la capacidad nacional para absorber el aprendizaje de las empresas exportadoras.

4) El aprovechamiento de economías de escala y de especialización, derivadas de la ampliación de los mercados a los cuales las empresas locales destinan su producción.

El interés por la relación entre el crecimiento exportador y el crecimiento económico, a decir de Blecker (2000), surgió por el enorme éxito exportador que Japón tuvo en los años sesenta y en los setenta, en industrias como textiles, automóviles y acero. Blecker señala que “a fines de los años setenta y comienzos de los ochenta, cuando Japón estaba subiendo en la escalera industrial hacia productos tecnológicamente mas avanzados, los cuatro tigres (República de Corea, la provincia china de Taiwán, Singapur y Hong Kong) aumentaron sus exportaciones de productos intensivos en trabajo, de esta manera iniciando lo que llegó a ser conocido como la formación de gansos voladores.” Ante el éxito que estos países tuvieron en lograr mayores tasas de crecimiento económico, muchas otras naciones en desarrollo emprendieron una estrategia basada en las exportaciones como principal motor del crecimiento económico.

En la década de los noventa, surgieron algunos cuestionamientos a la importancia de las exportaciones para impulsar el crecimiento económico; autores como Ghatak, y otros señalaban que son las exportaciones de productos manufactureros y no las exportaciones totales, las determinantes principales del crecimiento económico. Por otra parte, Sachs y Warner (1997) advertían sobre los peligros de basar las exportaciones en la explotación de recursos naturales, pues a la larga se encontrarían ante un impacto negativo sobre el crecimiento económico (por la volatilidad de los precios de estos productos y por el peligro de una apreciación del tipo de cambio real). Más adelante, Lederman y Maloney (2003) cuestionaron este hallazgo; sin embargo, están de acuerdo con señalar que la concentración de las exportaciones tiene un efecto negativo sobre el crecimiento económico. Más recientemente, Hausmann, y otros (2006) en su documento titulado “Lo que exportan importa”, señalan entre otras cosas que el tipo de productos que un país exporta tiene implicaciones en el desempeño económico. Hausmann, Hwang y Rodrik concluyen que “los países que exportan bienes asociados a altos niveles de productividad
crecen más rápidamente, aun después de que se controla por ingreso per cápita inicial, niveles de capital humano y características del país que son invariants en el tiempo).

El interés por el cumplimiento o no de la hipótesis de export-led growth, todavía está vigente; sólo basta revisar la enorme cantidad de estudios recientes sobre el tema utilizando diversas técnicas econométricas. En este sentido, esta investigación se centra en testar la validez de la hipótesis en un panel de 40 países en desarrollo seleccionados mostrando las debilidades y bondades de las distintas técnicas econométricas dentro de un análisis de series de tiempo y de datos de panel no estacionarios. Cabe mencionar que los 40 países incluidos en la estimación fueron elegidos con base en la disponibilidad de información, esto es, las naciones consideradas son las que contaban con información completa para todas las variables durante el período 1960-2003 dentro del grupo de países en desarrollo.
III. ENFOQUE ECONOMÉTRICO

En los documentos publicados sobre la hipótesis de crecimiento económico liderado por la expansión de las exportaciones se buscó encontrar evidencia que la apoyara mediante la estimación de distintos modelos y utilizando variados métodos econométricos. En la década actual, fueron Giles y Williams (2000) quienes emprendieron la ardua tarea de llevar a cabo una revisión de la literatura sobre la hipótesis referida; estos autores analizaron 150 estudios publicados durante el período 1963-1999. Lo relevante de su revisión —que es de interés en esta investigación— es que logran distinguir las distintas técnicas econométricas empleadas para verificar la hipótesis. ¹ El tipo de técnicas econométricas empleadas en los distintos estudios depende básicamente del estado de evolución de la Econometría, esto es, de las pruebas teóricas disponibles y de la accesibilidad de programas para aplicarlas. ²

En la presente década, las técnicas econométricas que han predominado para verificar la validez empírica de la hipótesis de export-led growth son fundamentalmente aquellas pertenecientes al ámbito de las series de tiempo no estacionarias y las correspondientes a las técnicas de datos de panel no estacionarios. En el anexo I se presenta una breve revisión de la literatura de los documentos publicados durante el período 2001-2006; esta revisión no pretende ser exhaustiva, sino más bien ilustrativa de los métodos econométricos empleados en las distintas investigaciones. Cabe señalar que dado que las técnicas de datos de panel no estacionarios (pruebas de raíces unitarias y de cointegración) son de reciente desarrollo teórico y aplicación empírica, ³ la cantidad de documentos que las han utilizado para la verificación empírica de la hipótesis es bastante reducida.

Si bien existe reconocimiento entre econometristas de las deficiencias en cuanto al poder de las pruebas de raíces unitarias y cointegración en el campo de las series de tiempo (véase la edición especial del Oxford Bulletin of Economics and Statistics, 1999), este tipo de métodos continúa siendo ampliamente utilizado. Sin embargo, muy recientemente las técnicas de datos de panel no estacionarios han tomado fuerza en la aplicación empírica debido sobre todo a que la combinación de datos de sección cruzada con datos de series de tiempo aumenta el poder de las pruebas existentes de raíces unitarias y cointegración, y permite un análisis más amplio que en el caso de las series de tiempo no estacionarias. ⁴ No obstante, la aplicación de estas técnicas en el

¹ Básicamente distinguen cuatro tipos de métodos: pruebas de causalidad de Granger (1969) o Sims (1972); mínimos cuadrados ordinarios en series de tiempo; análisis de sección cruzada y, finalmente, cointegración y vectores autorregresivos (VAR’s) en el ámbito de las series de tiempo.
² Para una revisión de la evolución de la econometría y las técnicas econométricas, véase Gilbert y Qin (2005).
³ Las primeras pruebas de raíces unitarias fueron desarrolladas a partir de comienzos de los años noventa (Levin y Lin, 1992), siendo la segunda mitad de dicha década cuando se consolidaron (Im, Pesaran y Shin, 1997). Las pruebas de cointegración para datos de Panel tardaron un poco más en desarrollarse y las primeras se dieron a conocer a partir de 1995 (Pedroni, 1995, 1997).
trabajo empírico no ha estado exenta de críticas; 5 una de las más importantes se refiere al supuesto que se hace en datos de panel de que no existen relaciones de cointegración entre las unidades de sección cruzada; si esto no se cumple, entonces la hipótesis nula de la existencia de una raíz unitaria es rechazada con demasiada frecuencia, aun cuando sea cierta; así, con este resultado se envía la señal de que el uso de datos de panel para probar la existencia de raíces unitarias en series de tiempo macroeconómicas no debe ser automático (Banerjee y otros, 2005).

De cualquier manera, pareciera que comienza a surgir cierto consenso en cuanto a la utilidad y a la variedad de aplicaciones de la técnica de datos de panel en comparación con la de series de tiempo. Por este motivo, en este documento se emplean ambas técnicas econométricas para llevar a cabo la verificación empírica de la hipótesis de export-led growth. En lo que sigue se expone con detalle las técnicas econométricas a emplear en el análisis empírico de este documento.

1. Pruebas de raíces unitarias

En el análisis econométrico clásico se hace el supuesto de que las medias y varianzas de las variables son constantes bien definidas e independientes del tiempo (esto es, son estacionarias); sin embargo, este supuesto no es satisfecho por un gran número de series de tiempo macroeconómicas. Así, si las medias y las varianzas de las variables cambian en el tiempo, todas las estadísticas calculadas en el modelo de regresión, el cual usa las medias y las varianzas, son también dependientes del tiempo, y no convergen a sus verdaderos valores conforme el tamaño de la muestra se incrementa. De esta manera, las pruebas convencionales estarán seriamente sesgadas hacia el rechazo de la hipótesis nula (no relación entre la variable dependiente y las independientes). Esto es un serio problema si la hipótesis nula es verdadera, por lo que puede surgir el problema de regresión espuria. 6

Varios estudios han examinado si la evolución de las series de tiempo de variables económicas es consistente con la existencia de una raíz unitaria (para una revisión sobre el tema, véanse los trabajos de Diebold y Nerlove, 1990; Campbell y Perron, 1991). En general, el análisis se ha realizado usando pruebas como la aumentada de Dickey-Fuller (ADF) (Dickey y Fuller, 1981) o pruebas semiparamétricas, como es el caso de la prueba de Phillips-Perron (Phillips y Perron, 1988). El principal problema es que en muestras finitas, cualquier proceso de raíz unitaria puede ser aproximado por un proceso que es estacionario en tendencia. Por ejemplo, el proceso simple estacionario en diferencias \(y_t = \phi y_{t-1} + \epsilon_t \), con \(\phi = 1 \) puede ser arbitrariamente bien aproximado por un proceso estacionario con \(\phi \) menor que uno, pero cercano a ese valor. El resultado es que las pruebas estadísticas de raíces unitarias tienen poder limitado en contra de la hipótesis alternativa. Campbell y Perron (1991) muestran que cuando se generan 100 observaciones a través de un proceso estacionario, pero con una raíz unitaria cercana a uno, entonces las pruebas tienen muy poco poder. Los autores comparan el caso \(\phi = 1 \) con el caso estacionario \(\phi = 0.98 \) y encuentran que la tasa de rechazo no es más del 1% mayor para el caso estacionario que para el caso de raíz unitaria.

Comenzando por los trabajos fundamentales de Quah (1990, 1994), Breitung y Meyer (1991) y Levin y Lin (1992 y 1993), muchas pruebas han sido propuestas en el intento de introducir pruebas de raíces unitarias y de cointegración en el contexto de los datos de panel. Los autores muestran que con la combinación de la información de series de tiempo con la de los datos de sección cruzada, la inferencia acerca de la existencia de raíces unitarias y/o cointegración puede hacerse de manera más sencilla y precisa, especialmente cuando la dimensión de los datos de series de tiempo no es muy larga y cuando se pueden obtener datos similares a lo largo de las unidades de sección cruzada, tales como países o industrias. Una segunda ventaja cuando se usan pruebas de raíces unitarias y cointegración en datos de panel es que, mientras que muchos de los estimadores y estadísticas para los procesos de raíces unitarias en series de tiempo son distribuciones complicadas de procesos de Wiener, en general los estimadores en datos de panel están distribuidos normalmente. Este resultado es robusto aun cuando se introduce heterogeneidad dentro de las unidades de series de tiempo que comprenden el panel.

El problema ahora es que se necesitan nuevos teoremas del límite central multivariados a fin de analizar las propiedades asintóticas tanto de los estimadores como de las pruebas. Recientemente, Phillips y Moon (1999) han presentado el tratamiento formal y general del comportamiento asintótico de un proceso integrado con índices dobles (el de la serie de tiempo y el de la sección cruzada). El límite del proceso puede depender de cual índice, N (las unidades de sección cruzada) o T (el tiempo), tiende a infinito. Podemos fijar N y permitir que T tienda a infinito y después hacer que N tienda a infinito o dejar que T y N tiendan a infinito a una determinada tasa controlada. Por ejemplo, Levin y Lin (1992 y 1993) muestran que sus estadísticas de raíces unitarias para datos de panel tienen distribuciones normales en el límite conforme N y T, tienden a infinito con $N/T \to 0$, e Im y otros (1997) proponen un conjunto de pruebas estadísticas distribuidas normalmente para N y T suficientemente grandes y $N/T \to k$, donde k es una constante positiva.

En la siguiente sección se presenta una revisión breve de las pruebas tanto de raíces unitarias como de cointegración en el contexto de datos de panel que han sido utilizadas en la literatura y que serán presentadas en la sección empírica. La revisión de las pruebas de raíces unitarias en el contexto de series de tiempo no se incluye en este documento debido a que son técnicas bastante conocidas (estándares) las cuales pueden ser revisadas en los distintos surveys y libros que hay sobre el tema.\footnote{Veáse, por ejemplo, Maddala y Kim (2000), Hamilton (1994) y Harvey (1995).}

a) **Pruebas de raíces unitarias para datos de panel con datos de sección cruzada independientes**

i) **Test de Levin, Lin y Chu.** Levin y Lin (1993) (LL)\footnote{La prueba ha sido publicada finalmente en Levin, Lin y Chu (2002).} consideran una muestra de N secciones cruzadas observadas en T períodos de tiempo. Los autores hacen el supuesto de que el proceso estocástico $\{y_{it}\} \sub{i=1,...,N y t=1,...,T}$ puede ser generado por uno de los siguientes tres modelos:
Modelo 1: \[\Delta y_{it} = \beta_i y_{it-1} + \varepsilon_{it} \]
Modelo 2: \[\Delta y_{it} = \alpha_i + \beta_i y_{it-1} + \varepsilon_{it} \]
Modelo 3: \[\Delta y_{it} = \alpha_i + \delta t + \beta_i y_{it-1} + \varepsilon_{it} \]

En donde \(\Delta y_{it} \equiv y_{it} - y_{it-1} \) sigue un proceso estacionario ARMA para cada unidad de sección cruzada y \(\varepsilon_{it} \) están distribuidos independientemente e idénticamente a lo largo de \(i \) y \(t \), con varianza finita. Si consideramos el modelo 1, la hipótesis nula de existencia de raíces unitarias se puede expresar como:

\[H_0 : \beta_i = 0 \text{ para toda } i, \quad (1) \]

Contra las alternativas,

\[H_A : \beta_i = \beta < 0 \text{ para toda } i. \quad (2) \]

De (1) y (2) salta a la vista una de las principales desventajas de la prueba de LL; es necesario que \(\beta \) sea homogénea entre las distintas \(i \).

Se requieren supuestos auxiliares bajo la hipótesis nula para los coeficientes \(\alpha_i \) y \(\alpha_i, \delta_i \) para los modelos 2 y 3, respectivamente. En el primer caso la hipótesis nula está dada por \(H_0 : \beta_i = 0 \) y \(\alpha_i = 0 \) para toda \(i, \) en contra de la alternativa \(H_A : \beta_i = \beta < 0 \) y \(\alpha_i \in \mathbb{R} \) para toda \(i, \) mientras que en el segundo caso la hipótesis nula es \(H_0 : \beta_i = 0 \) y \(\delta_i = 0 \) para toda \(i, \) contra la alternativa de que \(H_A : \beta_i = \beta < 0 \) y \(\delta_i \in \mathbb{R} \) para toda \(i. \) Es útil subrayar aquí que, en lo que respecta a procesos univariados, cuando un componente determinístico está presente en los datos observados, pero no se incluye en la regresión, la prueba de raíz unitarias será inconsistente, y en el caso de que se incluya en la regresión, pero que no esté presente en los datos observados, se reducirá el poder estadístico de la prueba de raíz unitaria. El procedimiento de LL para probar raíces unitarias en datos de panel involucra los siguientes pasos:

1) Remover los promedios de sección cruzada de los datos observados para eliminar la influencia de los efectos agregados y, de esta manera, reducir la dependencia entre secciones cruzadas. Como se verá, este método no ha estado exento de críticas.

2) En lugar de aplicar la prueba aumentada de Dickey-Fuller (ADF) para cada serie \(i, \) se debe llevar a cabo dos regresiones auxiliares de \(\Delta y_{it} \) e \(y_{it-1} \) con respecto a las \(p \) primeras diferencias rezagadas \(\Delta y_{it-1}, \ldots, \Delta y_{it-p} \) y las variables deterministas apropiadas, en donde se permite que el máximo rezago \(p \) varíe entre las unidades, y calcular los residuales, \(\hat{\varepsilon}_{it} \) y \(\hat{\nu}_{it-1} \), respectivamente, a partir de estas dos regresiones auxiliares. Posteriormente, se corre la regresión \(\hat{\varepsilon}_{it} \) sobre \(\hat{\nu}_{it-1} \) para obtener los valores de MCO para \(\beta_i: \)

\[\hat{\varepsilon}_{it} = \beta_i \hat{\nu}_{it-1} + \varepsilon_{it} \]
Para controlar por heterogeneidad en ε, los autores sugieren la siguiente normalización:

$$\hat{\sigma}_{\varepsilon} = \sum_{t=p+2}^{T} \left(\hat{\varepsilon}_{it} - \hat{\beta}_{i} \hat{\nu}_{it-1} \right)^2 / (T - p - 1)$$

$$\hat{\varepsilon}_{it} = \hat{\varepsilon}_{it} / \hat{\sigma}_{\varepsilon}$$

$$\hat{\nu}_{it-1} = \hat{\nu}_{it-1} / \hat{\sigma}_{\varepsilon}$$

Ahora, asintóticamente, $\hat{\varepsilon}_{it}$ están independiente e idénticamente distribuidos para todas las unidades i.

3) Estimar el cociente de las desviaciones estándar de corto y largo plazos para cada serie i y calcular el cociente promedio para todas las unidades i de la siguiente manera:

$$\hat{S}_{N} = \left(\sum_{i=1}^{N} \frac{\hat{\sigma}_{\varepsilon}}{\hat{\sigma}_{\varepsilon_{i}}} \right) / N$$

en donde la varianza de largo plazo $\hat{\sigma}_{\varepsilon_{i}}$ se calcula como:

$$\hat{\sigma}_{\varepsilon_{i}}^{2} = \frac{1}{T-1} \sum_{t=2}^{T} \Delta y_{it}^{2} + 2 \sum_{l=1}^{K} w_{l} \left(\frac{1}{T-1} \sum_{t=1}^{T} \Delta y_{it} \Delta y_{it-L} \right)$$

K es el parámetro del orden de truncamiento y w_{l} es una ventana de rezago.

Calcular la estadística para la prueba de panel. Bajo la hipótesis nula, los residuales normalizados $\hat{\varepsilon}_{it}$ son independientes de los residuales rezagados $\hat{\nu}_{it-1}$, y escribiendo $\hat{\varepsilon} = \left(\hat{\varepsilon}_{1t}, \hat{\varepsilon}_{2t}, \ldots, \hat{\varepsilon}_{Nt} \right)$ y $\hat{\nu} = \left(\hat{\nu}_{1t-1}, \hat{\nu}_{2t-1}, \ldots, \hat{\nu}_{Nt-1} \right)$, se puede probar esta hipótesis estimando la siguiente regresión:

$$\hat{\varepsilon} = \beta \hat{\nu} + \varepsilon$$

en donde ahora se utilizan todas las observaciones i y t. La estadística t está dada por:

$$t_{\beta=0} = \frac{\hat{\beta}}{SE(\hat{\beta})}$$

donde

$$SE(\hat{\beta}) = \sigma_{\varepsilon} \left(\hat{\nu}' \hat{\nu} \right)^{-1/2}$$
\[\sigma_{\hat{\epsilon}}^2 = \frac{(\epsilon'\epsilon)}{NT} \]

\[\tilde{T} = (T - \bar{p} - 1) y \bar{p} = \sum_{i=1}^{N} p_i \]

es el rezago promedio usado en las regresiones ADF individuales.

LL muestran que la estadística \(t \) (ecuación 3) tiene una distribución normal estándar en el límite para el modelo 1, pero no está centrada en cero en los modelos 2 y 3. De esta manera, ellos proponen la siguiente estadística \(t \) ajustada:

\[t_{\beta} = \frac{t_{\beta=0} - N\tilde{T}S_{NT}\sigma_{\hat{\epsilon}}^2SE(\hat{\beta})\mu_{\beta}^*}{\sigma_{\beta}^*} \]

(4)

Todos los términos han sido definidos previamente y \(\mu_{\beta}^* \) y \(\sigma_{\beta}^* \) son los ajustes de la media y la desviación estándar obtenidos de la simulación de Monte Carlo y tabuladas en su documento.

ii) Las pruebas de Im-Pesaran-Shin. Im, Pesaran y Shin (1997) (IPS) introducen las estadísticas \(t \), así como las estadísticas del Multiplicador de Lagrange para raíces unitarias en datos de panel, en donde la hipótesis alternativa permite que \(\beta_i \) difiera entre los distintos grupos. De esta manera, la hipótesis de existencia de raíces unitarias se establece de la siguiente forma:

\[H_0 : \beta_i = 0 \text{ para toda } i, \]

(5)

contra las alternativas,

\[H_A : \beta_i < 0 \text{ para } i = 1, 2, \ldots, N_1, \beta_i = 0, \ i = N_1 + 1, N_1 + 2, \ldots, N \]

(6)

Nótese que en este caso el enfoque que toma la prueba IPS permite, bajo la hipótesis alternativa, que algunas de las series individuales tengan raíces unitarias. Para probar la hipótesis nula, IPS usa estadísticas \(t \) separadas para las pruebas, \(t_{\beta} \), para cada una de las \(N \) unidades de sección cruzada, y define una estadística \(t \)-barra de la siguiente manera: \(\tilde{T}_{NT} = \sum_{i=1}^{N} t_{\beta} / N \). Bajo el supuesto de que el segundo momento de \(t_{\beta} \) existe para toda \(i \), los autores proponen el siguiente estadístico \(t \)-barra de medias de grupo:

\[\Gamma_{\beta} = \frac{\sqrt{N} \{ \tilde{T}_{NT} - E(t_{\beta} | \beta_i = 0) \}}{\sqrt{Var(t_{\beta} | \beta_i = 0)}} \Rightarrow N(0,1) \]

(7)

\[^9 \text{La prueba ha sido publicada en Im y otros (2003).} \]
en donde \(E(t_\tau | \beta_\tau = 0) \) y \(\text{Var}(t_\tau | \beta_\tau = 0) \) son la media y varianza común de \(t_\tau \) obtenidas bajo \(\beta = 0 \). Como se señala previamente, la consistencia de \(\Gamma_\tau \) se garantiza cuando \(N \) y \(T \) van a infinito y \(N/T \rightarrow k \). De la misma manera, IPS muestran que el estadístico barra LM de medias de grupo, bajo la hipótesis nula de existencia de raíces unitarias y conforme \(N \) y \(T \) van a infinito, está distribuido normalmente. IPS también reportan en su documento valores críticos muestra para ambos estadísticos.

\[\text{b) Pruebas de raíces unitarias para paneles con secciones cruzadas correlacionadas (cross-sectional correlated panels)} \]

Las pruebas de raíces unitarias previamente analizadas fallan en tomar en cuenta la posible dependencia en los datos de sección cruzada. Esta falla tiene importantes consecuencias. Como lo han mostrado O’Connell (1998) y Banerjee y otros (2005), cuando existe dependencia en los datos de sección cruzada, el tamaño del sesgo de las pruebas de raíces unitarias en datos de panel es muy grande, elevando los niveles de significancia de las pruebas, de un tamaño nominal de 5% hasta uno de 50%. Además, quitar la media a los datos de sección cruzada, como se hace por ejemplo en el documento de LL, podría no funcionar cuando las covarianzas por pares (pair-wise) de las secciones cruzadas de los términos de error difieren entre las series individuales, como se muestra en Gutiérrez (2006).

Ésta es la razón por la que en años recientes se han propuesto varias pruebas de raíces unitarias en panel que son más apropiadas para analizar paneles con correlaciones en las unidades de sección cruzada. Muchas de éstas consideran modelos en donde cada unidad de sección cruzada es generada por un componente común que influye todas las unidades en el panel, más un componente idiosincrático específico. En estos modelos el factor común desempeña un papel importante: éste permite que las dimensiones de la covarianza de las secciones cruzadas de las unidades se reduzcan. De esta manera, cuando se calculan las pruebas de raíces unitarias en panel, todos los procedimientos proponen metodologías que permiten el uso de datos defactorizados (defactored), esto es, independientes.

\[\text{i) El procedimiento de Moon y Perron (2004) (MP). Se puede comenzar el análisis} \]

considerando el modelo básico de panel dinámico propuesto por Moon y Perron (2004). Gutiérrez (2006) ha mostrado que esta metodología tiene mejores propiedades que otras pruebas de raíces unitarias que fueron recientemente propuestas para paneles con secciones cruzadas correlacionadas. Considérese el siguiente modelo:

\[
\begin{align*}
y_{it} &= \alpha_{i0} + x_{it} \\
x_{it} &= \rho_t x_{it-1} + u_{it} \\
u_{it} &= \beta f_t + e_{it}
\end{align*}
\]

(8)

en donde las \(y_{it} (i = 1, \ldots, N; t = 1, \ldots, T) \) observadas son generadas por un componente determinístico \(\alpha_{i0} \) y un proceso autorregresivo \(x_{it} \). El componente de error \(u_{it} \) sigue un modelo factor (factor model), en donde el componente factorial común (common factor component)
\(f_t = C(L)v_t \) se genera a través de un proceso lineal estacionario con cada matriz de rezago polinomial \(C(L) \) de dimensión \((K,K)\) con \(v_t \sim iid \left(0, I_K\right) \); \(\beta \) son los coeficientes de cargo de factor (factor loading coefficients). Los choques idiosincráticos \(e_{it} \) siguen un proceso lineal \(e_{it} = D_i(L)e_{it} \) y \(e_{it} \sim iid \left(0, \sigma_{e_{it}}^2\right) \). El modelo supone que \(v_t, e_{it} \) son mutuamente independientes.

La hipótesis nula en el modelo (8) es

\[H_0 : \rho_i = 1 \text{ para toda } i = 1, \ldots, N \]

en contra de la alternativa de

\[H_A : |\rho_i| < 1 \text{ para algunas } i \]

Se puede ver a partir de (8) que, bajo la hipótesis nula de \(\rho_i = 1 \), \(y_{it} \) está influida por dos componentes: los factores integrados \(\sum_{s=1}^{T} f_s \) y los errores idiosincráticos integrados \(\sum_{s=1}^{T} e_{is} \).

MP proponen quitar la dependencia en las secciones cruzadas en (8), multiplicando la matriz observada \(Y \) de dimensión \((T \times N)\) por la matriz de proyección \(Q_\beta \) y calculando el estimador autorregresivo apilado e insesgado de la siguiente manera:

\[
\hat{\rho}_\text{pool}^+ = \frac{\text{tr}\left(Y_{-1}Q_\beta Y'\right) - NT \lambda_e^N}{\text{tr}\left(Y_{-1}Q_\beta Y'_{-1}\right)}
\]

\(Y_{-1} \) es la matriz de datos observados rezagados; \(\text{tr} \left(\cdot\right) \) es el operador de la traza y \(\lambda_e^N \) es el promedio de sección cruzada de la varianza de largo plazo parcial de los errores idiosincráticos \(e_{it} \).

A fin de obtener estadísticas viables, el procedimiento MP requiere estimar el número \(K \) de factores en (8), la matriz de proyección \(Q_\beta \) y las varianzas de largo plazo. La primera tarea se completa usando una metodología similar a la propuesta en Bai y Ng (2002), mientras que el vector (o matriz cuando \(K>1 \)) de cargos de factor (factor loadings) \(\hat{\beta} \) y la matriz de proyección conectada \(Q_\beta \) se obtienen estimando los componentes principales de \(\hat{\hat{e}} = (Y - \hat{\hat{\rho}}_\text{pool}Y_{-1}) (Y - \hat{\hat{\rho}}_\text{pool}Y_{-1}) \), donde \(\hat{\hat{\rho}}_\text{pool} \) es el estimator apilado autorregresivo de mínimos cuadrados ordinarios.

Para comprobar la hipótesis nula (9), MP sugieren dos estadísticos de prueba:

\[
I^*_a = \sqrt{\frac{NT\left(\hat{\rho}_\text{pool}^+ - 1\right)}{2\hat{\lambda}_e^+ \sqrt{\hat{\lambda}_e^+}}}
\]

(12)
donde \(\hat{\rho}_{pool}^* \) es el estimador apilado autorregresivo corregido por sesgo de (11). Las cantidades \(\hat{\sigma}^2 \) se calculan como los promedios de las secciones cruzadas de \(\hat{\sigma}^2 \); esto es, la varianza de largo plazo de los errores idiosincráticos estimados; \(\hat{e}_{it} \) y \(\hat{\phi}^4 \) se calcula como el promedio de sección cruzada de \(\hat{\sigma}^4 \).

Bajo la hipótesis nula \(H_0 \), MP muestran que para \((N,T \to \infty) \) con \(N/T \to 0 \) los estadísticos (12) y (13) tienen una distribución normal estándar.

2. Pruebas de cointegración en datos de panel

Una dificultad que puede surgir cuando se realiza una regresión entre dos series no estacionarias es el problema de la regresión espuria: cuando se usan dos series integradas no relacionadas, la regresión de una contra la otra tienden a producir un parámetro \(\hat{\beta} \) no consistente, pero aparentemente significativo (Granger y Newbold, 1974).

En contraste con la regresión espuria con series de tiempo, en el caso de datos de panel no estacionarios (que combina series de tiempo con datos de sección cruzada), Phillips y Moon (1999) muestran que para la regresión espuria en datos de panel y bajo condiciones de regularidad muy débiles, el estimador de mínimos cuadrados apilados del coeficiente \(\beta \) es consistente y tiene una distribución normal en el límite. La razón de esto es que los datos de secciones cruzadas independientes en los paneles introducen información y esto lleva a una mayor señal en comparación con el caso de las series de tiempo. El problema aquí es que mientras que el coeficiente \(\beta \) converge a su verdadero valor, las estadística \(t \) diverge, de manera que las inferencias acerca de \(\hat{\beta} \) son incorrectas con probabilidad que va a uno asintóticamente (Kao, 1999).

En el análisis empírico se usan dos conjuntos de pruebas de cointegración. El primer conjunto de pruebas ha sido propuesto por Kao (1999), y puede ser visto como una generalización de la prueba de Dickey-Fuller (DF) y de la prueba Dickey-Fuller Aumentada (ADF), pero en el contexto de datos de panel. La prueba consiste en tomar como nula la hipótesis de no cointegración y usar los residuales obtenidos de una regresión estática en datos de panel para construir las estadísticas de prueba y tabular las distribuciones. Definiendo a \(\hat{e}_{it} \) como los residuales estimados de la regresión estática, la prueba DF se puede obtener de la siguiente regresión:

\[
\hat{e}_{it} = \gamma \hat{e}_{it-1} + V_{it},
\]

(14)
La hipótesis nula de no cointegración se puede escribir como \(H_0 : \gamma = 1 \).

Kao (1999) propone cuatro tipos de prueba DF:

1. \[\text{DF}_\gamma = \frac{\sqrt{NT} (\hat{\gamma} - 1) + 3\sqrt{N}}{\sqrt{10.2}} \]

2. \[\text{DF}_t = \sqrt{1.25t_\gamma + \sqrt{1.875N}} \]

3. \[\text{DF}^*_\gamma = \frac{\sqrt{NT} (\hat{\gamma} - 1) + \left(3\sqrt{N} \hat{\sigma}_v^2 / \hat{\sigma}_{0v}^2\right)}{\sqrt{3 + (7.2 \hat{\sigma}_v^4 / \hat{\sigma}_{0v}^4)}} \]

4. \[\text{DF}^*_t = \frac{t_\gamma + \left(\sqrt{6N} \hat{\sigma}_v / \hat{\sigma}_{0v}\right)}{\sqrt{(\hat{\sigma}_{0v}^2 / 2\hat{\sigma}_v^2) + (3\hat{\sigma}_{0v}^2 / 10\hat{\sigma}_v^2)}} \]

donde los asteriscos indican pruebas para la regresión de cointegración con regresores endógenos; \(x_{it} \), \(t_\gamma \) es la estadística t para \(\gamma \), y finalmente \(\hat{\sigma}_v^2 = \Sigma_x - \Sigma_xe\Sigma_x^{-1} \) y \(\hat{\sigma}_{0v}^2 = \Omega_u - \Omega_{uu}' \Omega_x^{-1} \), \(\Sigma \) y \(\Omega \) son la covarianza y las matrices de covarianza de largo plazo de los errores en la regresión estática de cointegración, respectivamente. Kao (1999) también propone una prueba tipo ADF. En este caso la regresión (14) es aumentada a fin de incluir \(p \) rezagos diferenciados de los términos de error de la regresión de cointegración estática, \(\hat{e}_{it} \)

\[\hat{e}_{it} = \gamma \hat{e}_{i,t-1} + \sum_{j=1}^{p} \delta_j \Delta \hat{e}_{i,t-j} + V_{it}, \quad (15) \]

y en este caso la prueba ADF, con la hipótesis nula de no cointegración, está dada por

5. \[\text{ADF} = \frac{t_\gamma + \left(\sqrt{6N} \hat{\sigma}_v / \hat{\sigma}_{0v}\right)}{\sqrt{(\hat{\sigma}_{0v}^2 / 2\hat{\sigma}_v^2) + (3\hat{\sigma}_{0v}^2 / 10\hat{\sigma}_v^2)}} \]

Nótese que la prueba ADF es igual a la prueba DF (4), excepto que en este caso \(t_\gamma \) es la estadística t para \(\gamma \) en la regresión (15). Todas las pruebas tienen distribuciones asintóticas que convergen a una distribución normal estándar N (0,1).

Pedroni (1999), extendiendo los resultados obtenidos en Pedroni (1995), proponen siete estadísticas de cointegración en panel para la hipótesis nula de no cointegración en paneles dinámicos con regresores múltiples. Las pruebas permiten heterogeneidad entre unidades individuales del panel y, en contraste con las pruebas DF de Kao (1999) 1 y 2, no se imponen requerimientos de exogeneidad en los regresores \(x_{it} \) en la regresión de cointegración. Cuatro de las siete pruebas de Pedroni (1999) se definen apilando a lo largo de la dimensión dentro (within-dimension) y las restantes tres están basadas en dimensiones entre (between-dimension). Dentro
del primer conjunto de pruebas, tres requieren del uso de correcciones no paramétricas, como en el caso de Phillips y Perron (1988), y la cuarta es una prueba paramétrica ADF. En el segundo conjunto de pruebas, dos usan correcciones no paramétricas, en tanto que la tercera es una prueba ADF.

Considerando a γ_i como el coeficiente autorregresivo de los residuales en la i-ésima sección cruzada, la primera categoría de pruebas requiere la siguiente especificación de las hipótesis nula y alternativa:

$$H_0: \gamma_i = 1, \text{ for all } i, \quad H_A: \gamma_i < 1 \text{ para toda } i.$$

y el segundo conjunto de pruebas usan

$$H_0: \gamma_i = 1, \text{ for all } i, \quad H_A: \gamma_i < 1 \text{ para toda } i.$$

De esta manera, todas las pruebas de Pedroni pueden construirse usando los residuales de la regresión de cointegración; los residuales también son utilizados para construir varios parámetros ruidosos, así como varianzas de largo plazo. Finalmente, Pedroni (1999) muestra que, después de una estandarización apropiada, todas las pruebas tienen distribuciones asintóticas que convergen a una distribución normal estándar $N(0,1)$.

3. Métodos de estimación en paneles cointegrados

En esta sección se revisan los métodos para estimar los vectores de cointegración en paneles no estacionarios propuestos por Pedroni (2000). En particular, se presenta un método basado en principios de mínimos cuadrados ordinarios completamente modificados, que es capaz de tomar en cuenta la heterogeneidad entre las unidades de sección cruzada de los datos de panel. La metodología permite producir estimadores asintóticamente inesgados de largo plazo comunes (asymptotically common long run unbiased estimators) que son invariantes a la heterogeneidad de corto plazo que usualmente está presente en los datos agregados a nivel nacional.

Comiencese con el siguiente sistema cointegrado

$$y_{it} = \alpha_{it} + \beta x_{it} + u_{it},$$
$$x_{it} = x_{it-1} + e_{it}$$

(16)

donde el vector de errores $\xi_t = (u_{it}, e_{it})$ es estacionario con una matriz de covarianza asintótica para cada sección cruzada Ω. De esta manera, se dice que y_{it} y x_{it} están cointegrados para cada miembro del panel con vector de cointegración β si y_{it} es integrada de orden uno. Para conservar la notación simple ahora se propone que el estimador completamente modificado para x_{it} sea un regresor único. Los estimadores pueden ampliarse fácilmente para $m > 1$ regresores, siempre que estos no estén cointegrados.
Se define a la matriz de largo plazo Ω_i como

$$
\Omega_i = \begin{bmatrix}
\Omega_{11i} & \Omega_{12i} \\
\Omega_{21i} & \Omega_{22i}
\end{bmatrix}
$$

(17)

donde Ω_{11i}, Ω_{22i} y Ω_{21i} son las matrices de las varianzas de largo plazo de los errores \upi_i y ε_i, y la matriz de covarianza entre los residuales \upi_i y ε_i, respectivamente.

Si el proceso ξ_{it} satisface un teorema del límite central multifuncional, de manera que para cada i

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{[Tr]} \xi_i \rightarrow B_i(\Omega_i)
$$

(18)

esto es, para que $T \rightarrow \infty$ converja a un movimiento Browniano definido en el intervalo $r \in [0,1]$ con matriz de covarianza Ω_i, se asume que los procesos individuales son independientes entre las unidades de sección cruzada, esto es, $E[\xi_{it}, \xi_{jt}] = 0$ para toda $i \neq j$ y, finalmente, definiendo las siguientes matrices triangulares:

$$
L_{11i} = \left(\Omega_{11i} - \Omega_{21i}^2/\Omega_{22i} \right)^{1/2}, L_{21i} = 0, L_{22i} = \Omega_{22i}^{1/2}, L_{22i} = \Omega_{22i}^{1/2}
$$

(19)

el estimador completamente modificado puede calcularse como:

$$
\hat{\beta}_{iM} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_i)^2 \right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_i) y_{it}^* - T \hat{y}_i \right)
$$

(20)

con:

$$
y_{it}^* = (y_{it} - \bar{y}_i) - \frac{\hat{L}_{23i}}{\hat{L}_{22i}} \Delta x_i + \frac{\hat{L}_{31i} - \hat{L}_{22i}}{\hat{L}_{23i}} \beta (x_{it} - \bar{x}_i)
$$

(21)

y \hat{y}_i es un término de correlación serial que puede calcularse usando las matrices de varianzas-covarianzas previamente presentadas.

En la sección práctica del documento se proporcionarán estimaciones de la regresión de crecimiento liderado por las exportaciones, usando (20) y las estadísticas t.
IV. MODELO EMPÍRICO A ESTIMAR

A partir de la revisión extensa de la literatura llevada a cabo por Giles y Williams (2000) y la incluida en esta investigación (véase el anexo 1), se identificaron las principales críticas hechas a la especificación de los modelos usados para la validación empírica de la hipótesis de export-led growth. Las críticas más fuertes y recurrentes tienen que ver con dos aspectos.

Primero, puede existir una correlación espuria entre el PIB y las exportaciones (conocido como el efecto de la identidad contable) por el hecho de que las exportaciones en sí mismas son parte del PIB. Esta apreciación llevó a algunos autores a usar el PIB neto de exportaciones o a utilizar en la estimación exportaciones manufactureras reales, en lugar de las exportaciones totales. En segundo lugar, el hecho de que buena parte de los estudios solamente se limitaba a estimar la relación entre las exportaciones y el PIB, levantó suspicacias en el sentido de que cualquier correlación observada entre estas variables podría reflejar relaciones subyacentes vía otras variables económicas. Más adelante esto llevó a estimar funciones de producción agregadas que incluían a las exportaciones como variable explicativa junto con otros fundamentos que determinan el crecimiento económico como el trabajo, capital y la inversión.

En este sentido, el modelo desarrollado en esta investigación toma en cuenta las críticas anteriores para llegar a la especificación final, que se detalla a continuación.

Comiéncese por introducir la siguiente función de producción neoclásica:

\[Y_{it} = A_{it} K_{it}^\alpha L_{it}^\beta \]

(22)

donde \(Y_{it} \) se refiere a la producción agregada, \(K_{it} \) es el stock de capital, \(L_{it} \) es el stock de fuerza laboral y, finalmente, \(A_{it} \) es la productividad total de los factores. Todas las variables están indexadas. El índice \(i = 1, \ldots, N \) se refiere a los \(N \) países y el índice \(t = 1, \ldots, T \) se refiere a las observaciones. Si se supone que la productividad total de los factores está influída de manera lineal-logarítmica por el nivel de exportaciones \(IX_{it} \), más un factor fijo exógeno resumido en la variable \(C_i \), se puede escribir:

\[A_{it} = C_i IX_{it}^{\gamma} \]

(23)

Sustituyendo (23) en (22), tomando logaritmos naturales a ambos lados de la ecuación y agregando un término de error, se cumple la siguiente ecuación lineal:

\[\ln Y_{it} = \ln C_i + \alpha \ln K_{it} + \beta \ln L_{it} + \gamma \ln IX_{it} + e_{it} \]

(24)

10 A este respecto, cabe anotar que Atukeren (1994) ha señalado que las pruebas de causalidad en el sentido de Granger no son afectadas por una relación de identidad contable.
en la cual todos los coeficientes α, β y γ son elasticidades. Debido a la crítica de la identidad contable anteriormente señalada, se define a la variable dependiente neta de exportaciones, esto es, $NY_{it} = Y_{it} - IX_{it}$. De esta manera, se estima la siguiente ecuación:

$$\ln NY_{it} = \ln C_t + \alpha \ln K_t + \beta \ln L_t + \gamma \ln IX_{it} + \epsilon_t$$ \hspace{1cm} (25)

Naturalmente, se encontrará apoyo a la hipótesis de export-led growth en los datos si el valor de γ es positivo y estadísticamente significativo. Se utilizan las siguientes variables proxy para propósitos de estimación del modelo: el PIB neto de exportaciones, la formación bruta de capital, la fuerza laboral total y las exportaciones de bienes y servicios, todas las variables, con excepción de la fuerza laboral, están expresadas en dólares constantes de 2000.
V. DATOS Y RESULTADOS EMPÍRICOS

Se aplica el modelo a un conjunto de 40 países en desarrollo de tres distintos continentes; la estimación se lleva a cabo para el periodo 1960-2003.

Se comienza el análisis calculando las pruebas de raíces unitarias tanto en el contexto de series de tiempo como en el de datos de panel a fin de encontrar el orden de integración de las variables incluidas en la ecuación 25. Como segundo paso, se comprueba si las variables en la ecuación (25) están cointegradas. Si existe una relación de cointegración, la misma ecuación se estimará usando el método de MCO completamente modificados propuesto por Pedroni (2000) en el caso de datos de panel, y el de MCO completamente modificados usados comúnmente en el campo de las series de tiempo no estacionarias. Finalmente, centrándose en el análisis de datos de panel no estacionarios, será empleado un método de regresión rolada (rolling regression) para analizar si las elasticidades han variado durante el periodo de análisis.

1. Pruebas para detectar la existencia de raíces unitarias

a) Pruebas para raíces unitarias individuales en series de tiempo

Con el fin de comparar los resultados de las pruebas de raíces unitarias y de cointegración en datos de panel con los obtenidos por los métodos estándar de series de tiempo, se comienza el análisis empírico presentando en los cuadros 1a y 1b las pruebas Dickey-Fuller aumentada (ADF) y Phillips-Perron (Za). Como es bien conocido, ambas pruebas tienen como hipótesis nula que el proceso no es estacionario en contra de la hipótesis alternativa en la que el proceso es estacionario. Se reportan los valores críticos de las pruebas al 10%, 5% y 1%, respectivamente al final de cada cuadro.

Con la excepción de algunos países (con la prueba ADF, las variables asociadas al capital y al trabajo son estacionarias para el caso de República del Congo, mientras que el PIB neto de exportaciones y la variable asociada al capital es estacionaria para el caso de República Dominicana; lo mismo sucede para los casos de Gabón y Honduras, en los cuales las exportaciones rechazan la hipótesis nula de no estacionariedad; con la prueba de Phillips-Perron, el PIB neto de exportaciones de República del Congo y de Gabón rechazan la hipótesis nula de no

11 Los países incluidos en el panel son: Argentina, Bangladesh, Benin, Brasil, Camerún, Chile, Colombia, República del Congo, Costa Rica, Costa de Marfil, República Dominicana, Ecuador, República Árabe de Egipto, El Salvador, Gabón, Ghana, Guatemala, Haití, Honduras, Indonesia, Kenya, República de Corea, Lesotho, Madagascar, Malawi, Mauritania, México, Nicaragua, Pakistán, Paraguay, Perú, Filipinas, Rwanda, Senegal, Sudáfrica, Tailandia, Togo, Trinidad y Tabago, Uruguay y Zambía. La información de las distintas variables incluidas en la estimación se obtuvo de la base de datos de Banco Mundial (World Development Indicators); la selección de países en desarrollo que integrarían la muestra se hizo con base en el criterio de disponibilidad de datos para todo el periodo.
Como previamente se destacó, las pruebas estadísticas de raíces unitarias tienen poder limitado en contra de la alternativa de estacionariedad; ésta es la razón por la que en años recientes las pruebas de raíces unitarias en datos de panel han sido utilizadas para mejorar el poder de las estadísticas de pruebas.

Cuadro 1a
RESULTADOS DE LAS PRUEBAS DE RAÍCES UNITARIAS PAÍS POR PAÍS

<table>
<thead>
<tr>
<th>País</th>
<th>Prueba ADF (a)</th>
<th>Prueba Za (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lnNY</td>
<td>lnI</td>
</tr>
<tr>
<td>Argentina</td>
<td>-1.95</td>
<td>-2.17</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1.26</td>
<td>-0.28</td>
</tr>
<tr>
<td>Benín</td>
<td>1.4</td>
<td>-0.5</td>
</tr>
<tr>
<td>Brasil</td>
<td>-1.99</td>
<td>-1.74</td>
</tr>
<tr>
<td>Camerún</td>
<td>-1.05</td>
<td>-2</td>
</tr>
<tr>
<td>Chile</td>
<td>-0.13</td>
<td>-0.24</td>
</tr>
<tr>
<td>Colombia</td>
<td>-2.26</td>
<td>-1.43</td>
</tr>
<tr>
<td>República del Congo</td>
<td>-2.47</td>
<td>-2.83c/</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>-2.23</td>
<td>-0.71</td>
</tr>
<tr>
<td>República Dominicana</td>
<td>-2.37</td>
<td>-1.58</td>
</tr>
<tr>
<td>Ecuador</td>
<td>-2.52</td>
<td>-1.48</td>
</tr>
<tr>
<td>Egipto</td>
<td>-1.07</td>
<td>-1.38</td>
</tr>
<tr>
<td>El Salvador</td>
<td>-1.62</td>
<td>-1.36</td>
</tr>
<tr>
<td>Gabón</td>
<td>-1.59</td>
<td>-1.85</td>
</tr>
<tr>
<td>Ghana</td>
<td>-2.13</td>
<td>-1.96</td>
</tr>
<tr>
<td>Guatemala</td>
<td>-1.79</td>
<td>-1.71</td>
</tr>
<tr>
<td>Haití</td>
<td>-1.8</td>
<td>-1.32</td>
</tr>
<tr>
<td>Honduras</td>
<td>0.36</td>
<td>-0.97</td>
</tr>
<tr>
<td>Indonesia</td>
<td>-0.36</td>
<td>-1.55</td>
</tr>
</tbody>
</table>

Notas: a/ b/ c/ indican niveles de significancia al 10%, 5% y 1%, respectivamente.

(a) Prueba *one-sided (lower-tail)* de la hipótesis nula en la que las variables no son estacionarias; Said y Dickey (1984) valores críticos al 10%, 5% y 1% corresponden a los valores -3.57, -2.94 y -2.62, respectivamente.
(b) Prueba *one-sided (upper-tail)* de la hipótesis nula en la que las variables no son estacionarias; Phillips (1987) valores críticos al 10%, 5% y 1% corresponden a los valores -19.80, -13.88, y -11.16, respectivamente.
RESULTADOS DE LAS PRUEBAS DE RAÍCES UNITARIAS PAÍS POR PAÍS

<table>
<thead>
<tr>
<th>País</th>
<th>Prueba ADF (a) lnY</th>
<th>lnI</th>
<th>lnL</th>
<th>lnX</th>
<th>Prueba Za (b) lnY</th>
<th>lnI</th>
<th>lnL</th>
<th>lnX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>-2,57</td>
<td>-2,69</td>
<td>-2,63 a/</td>
<td>-0,70</td>
<td>-1,17</td>
<td>-2,90</td>
<td>0,05</td>
<td>-1,30</td>
</tr>
<tr>
<td>República de Corea</td>
<td>-2,40</td>
<td>-3,08 b/</td>
<td>-1,85</td>
<td>-3,20 b/</td>
<td>-0,92</td>
<td>-1,57</td>
<td>-0,76</td>
<td>-1,16</td>
</tr>
<tr>
<td>Lesotho</td>
<td>-2,29</td>
<td>-2,06</td>
<td>-1,96</td>
<td>0,66</td>
<td>-1,60</td>
<td>-3,88</td>
<td>-0,33</td>
<td>0,92</td>
</tr>
<tr>
<td>Madagascar</td>
<td>-1,70</td>
<td>-1,53</td>
<td>2,79</td>
<td>-1,36</td>
<td>-1,68</td>
<td>-9,33</td>
<td>0,24</td>
<td>-32,38</td>
</tr>
<tr>
<td>Malawi</td>
<td>-1,99</td>
<td>-1,39</td>
<td>-1,26</td>
<td>-1,11</td>
<td>-1,24</td>
<td>-16,98 b/</td>
<td>-0,18</td>
<td>-1,02</td>
</tr>
<tr>
<td>Mauritania</td>
<td>-0,82</td>
<td>-0,34</td>
<td>0,56</td>
<td>-6,46</td>
<td>-2,55</td>
<td>-1,67</td>
<td>0,30</td>
<td>-6,52</td>
</tr>
<tr>
<td>México</td>
<td>-3,63 a/</td>
<td>-2,21</td>
<td>-2,02</td>
<td>-0,03</td>
<td>-2,11</td>
<td>-2,69</td>
<td>-0,24</td>
<td>0,16</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>-2,91</td>
<td>-1,96</td>
<td>-0,58</td>
<td>-1,43</td>
<td>-7,41</td>
<td>-8,37</td>
<td>0,01</td>
<td>-5,21</td>
</tr>
<tr>
<td>Pakistán</td>
<td>-3,29</td>
<td>-1,09</td>
<td>0,23</td>
<td>-0,19</td>
<td>-0,74</td>
<td>-3,23</td>
<td>0,07</td>
<td>0,11</td>
</tr>
<tr>
<td>Paraguay</td>
<td>-1,50</td>
<td>-2,40</td>
<td>0,01</td>
<td>-0,96</td>
<td>-1,83</td>
<td>-1,92</td>
<td>0,08</td>
<td>-0,86</td>
</tr>
<tr>
<td>Perú</td>
<td>-2,07</td>
<td>-2,36</td>
<td>-0,16</td>
<td>1,27</td>
<td>-2,54</td>
<td>-7,46</td>
<td>0,18</td>
<td>1,24</td>
</tr>
<tr>
<td>Filipinas</td>
<td>-2,01</td>
<td>-1,68</td>
<td>-0,94</td>
<td>-0,40</td>
<td>-2,41</td>
<td>-2,20</td>
<td>-0,11</td>
<td>-0,35</td>
</tr>
<tr>
<td>Ruanda</td>
<td>-0,79</td>
<td>-1,43</td>
<td>-0,78</td>
<td>-1,48</td>
<td>-1,28</td>
<td>-3,64</td>
<td>-0,46</td>
<td>-3,75</td>
</tr>
<tr>
<td>Senegal</td>
<td>1,12</td>
<td>-0,11</td>
<td>0,62</td>
<td>0,56</td>
<td>1,13</td>
<td>-0,34</td>
<td>0,08</td>
<td>-1,70</td>
</tr>
<tr>
<td>Sudáfrica</td>
<td>-3,60 a/</td>
<td>-3,62 a/</td>
<td>-0,32</td>
<td>0,24</td>
<td>-2,29</td>
<td>-5,57</td>
<td>0,15</td>
<td>-0,76</td>
</tr>
<tr>
<td>Tailandia</td>
<td>-2,08</td>
<td>-1,86</td>
<td>-2,54</td>
<td>-0,34</td>
<td>-1,85</td>
<td>-2,21</td>
<td>-0,93</td>
<td>-0,10</td>
</tr>
<tr>
<td>Togo</td>
<td>-1,54</td>
<td>-3,41 b/</td>
<td>-0,01</td>
<td>-2,15</td>
<td>-2,74</td>
<td>-5,64</td>
<td>0,29</td>
<td>-3,24</td>
</tr>
<tr>
<td>Trinidad y Tabago</td>
<td>-1,70</td>
<td>-1,46</td>
<td>-0,49</td>
<td>0,28</td>
<td>-5,30</td>
<td>-4,25</td>
<td>-0,04</td>
<td>-0,99</td>
</tr>
<tr>
<td>Uruguay</td>
<td>-1,29</td>
<td>-2,24</td>
<td>0,11</td>
<td>-1,03</td>
<td>-1,63</td>
<td>-4,19</td>
<td>0,40</td>
<td>-0,78</td>
</tr>
<tr>
<td>Zambia</td>
<td>-2,71 a/</td>
<td>-1,31</td>
<td>-2,12</td>
<td>-1,36</td>
<td>-2,37</td>
<td>-9,56</td>
<td>-0,22</td>
<td>-9,27</td>
</tr>
</tbody>
</table>

Notas: a/, b/, (***)) indican niveles de significancia al 10%, 5% y 1%, respectivamente.
(a) Prueba one-sided (lower-tail) de la hipótesis nula, en la que las variables no son estacionarias; Said y Dickey (1984) valores críticos al 10%, 5% y 1% corresponden a los valores -3,57, -2,94 y -2,62, respectivamente. (b) Prueba one-sided (upper-tail) de la hipótesis nula de que las variables no son estacionarias; Phillips (1987) valores críticos al 10%, 5% y 1% corresponden a los valores -19,80, -13,88, y -11,16, respectivamente.

b) Pruebas para raíces unitarias en datos de panel

En los siguientes cuadros (2-4) se presentan estadísticas de prueba correspondientes a las pruebas de raíces unitarias en datos de panel presentadas en el capítulo III. Se comienza mostrando los valores calculados de las pruebas usando la especificación del modelo 2 de la prueba de Levi, Lin y Chu (2003). La prueba se aplica a (los logaritmos de) las variables inversión, trabajo, exportaciones, PIB y finalmente PIB neto de exportaciones. En cada columna del cuadro 2 se presentan las estadísticas t calculadas usando un orden autorregresivo fijo para las estadísticas de prueba de Dickey-Fuller aumentada (ADF). Recuérdese que esta estadística de prueba está distribuida asintóticamente como una normal estándar, y bajo la hipótesis alternativa diverge a menos infinito. De esta manera, un valor menor a -1,654 significa que la hipótesis nula de no estacionariedad debe ser rechazada al nivel de significancia del 5%.
Al analizar el cuadro 2, se puede observar que cuando \(p = 4 \) solamente en el caso de la variable capital no se rechaza la hipótesis nula de no estacionariedad, esto es, la variable capital sigue un proceso \(I(1) \). El resto de las variables consideradas parecen seguir un proceso \(I(0) \). Nótese que las estadísticas de prueba están influídas fuertemente por el orden autorregresivo.

Cuadro 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>(p=0)</th>
<th>(p=1)</th>
<th>(p=2)</th>
<th>(p=3)</th>
<th>(p=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I (*))</td>
<td>-2 499</td>
<td>-1 900</td>
<td>-0 307</td>
<td>0 194</td>
<td>-0 133</td>
</tr>
<tr>
<td>L</td>
<td>-9 040</td>
<td>-3 613</td>
<td>-4 145</td>
<td>-3 235</td>
<td>-3 522</td>
</tr>
<tr>
<td>Exportaciones</td>
<td>-1 533</td>
<td>-1 204</td>
<td>-1 775</td>
<td>-2 357</td>
<td>-1 989</td>
</tr>
<tr>
<td>PIB</td>
<td>-0 531</td>
<td>-1 613</td>
<td>-0 862</td>
<td>-0 867</td>
<td>-1 911</td>
</tr>
<tr>
<td>PIB-exportaciones</td>
<td>-1 312</td>
<td>-1 607</td>
<td>-1 141</td>
<td>-1 257</td>
<td>-1 692</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Nota: Todas las variables consideradas están en logaritmo natural. \(I (*) \) se refiere a la variable formación bruta de capital.

Como está reportado en Karlsson y Löthgren (2000), esta prueba tiene un poder más bajo que las de Im, Pesaran y Shin (2003). Ésta es la razón por la que en el siguiente cuadro se reproduce el mismo conjunto de estadísticas de prueba que en el caso del cuadro anterior, pero calculadas utilizando la prueba de Im, Pesaran y Shin (2003).

Del cuadro 3 se puede observar primero que las estadísticas de prueba de Im y otros (2003) son más estables a cambios en el orden autorregresivo. En segundo lugar, se nota que ahora se puede rechazar la hipótesis nula de no estacionariedad para las variables de capital y del PIB neto de exportaciones.

Cuadro 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>(p=0)</th>
<th>(p=1)</th>
<th>(p=2)</th>
<th>(p=3)</th>
<th>(p=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>-1 868</td>
<td>-1 864</td>
<td>-2 075</td>
<td>-2 065</td>
<td>-2 227</td>
</tr>
<tr>
<td>L</td>
<td>13 804</td>
<td>13 696</td>
<td>13 306</td>
<td>13 032</td>
<td>12 612</td>
</tr>
<tr>
<td>Exportaciones</td>
<td>2 973</td>
<td>2 911</td>
<td>2 676</td>
<td>2 598</td>
<td>2 598</td>
</tr>
<tr>
<td>PIB</td>
<td>1 230</td>
<td>1 192</td>
<td>0 965</td>
<td>0 919</td>
<td>0 919</td>
</tr>
<tr>
<td>PIB-exportaciones</td>
<td>-1 887</td>
<td>-1 883</td>
<td>-2 094</td>
<td>-2 083</td>
<td>-2 083</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Nota: Todas las variables consideradas están en logaritmo natural.
Como previamente se señaló, tanto las pruebas de Levin y otros (2002) como las de Im y otros (2003) están basadas en la hipótesis de independencia entre las unidades de sección cruzada. Si esta hipótesis no se cumple, ambas pruebas estarán sesgadas fuertemente hacia la aceptación de la hipótesis alternativa de estacionariedad. De esta manera, es interesante analizar cómo cambian los resultados cuando se toma en cuenta la dependencia en la sección cruzada (cross-sectional dependence) entre el conjunto de los datos de panel.

En el cuadro 4 se presentan las estadísticas de prueba propuestas por Moon y Perron (2003). Solamente se muestra el valor de la prueba t_b (véase 13), porque se ha demostrado que esta prueba tiene mejores propiedades con respecto al resto (véase Gutiérrez, 2006). En el cuadro 4 en cada columna se reporta el valor de las estadísticas de prueba calculadas para un número fijo de factor (es) k; se permiten hasta cuatro factores. En la primera columna se reporta también el número de factores sugeridos para cada variable empleando el método de Bai y Ng (2002).

 Nótese que ahora todas las estadísticas de prueba no rechazan la hipótesis nula de no estacionariedad para todas las variables de forma contundente. De esta manera, usando los resultados previos se concluye que todas las variables incluidas en el conjunto de datos de panel son no estacionarias, esto es, siguen un proceso $I(1)$; habiendo llegado a esta conclusión, ahora se puede probar si están cointegradas.

<table>
<thead>
<tr>
<th>Cuadro 4</th>
</tr>
</thead>
</table>

ESTADÍSTICAS DE PRUEBA DE RAÍCES UNITARIAS EN PANEL DE MOON Y PERRON
(2003), 40 PAÍSES, 1960-2003

<table>
<thead>
<tr>
<th>Variable a/</th>
<th>$k=1$</th>
<th>$k=2$</th>
<th>$k=3$</th>
<th>$k=4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (1)</td>
<td>2 982</td>
<td>3 440</td>
<td>2 106</td>
<td>2 153</td>
</tr>
<tr>
<td>L (4)</td>
<td>0 490</td>
<td>15 534</td>
<td>26 730</td>
<td>34 394</td>
</tr>
<tr>
<td>Exportaciones (3)</td>
<td>10 361</td>
<td>11 979</td>
<td>10 284</td>
<td>11 208</td>
</tr>
<tr>
<td>PIB (2)</td>
<td>7 419</td>
<td>5 196</td>
<td>4 533</td>
<td>3 974</td>
</tr>
<tr>
<td>PIB-exportaciones (1)</td>
<td>5 630</td>
<td>4 649</td>
<td>5 404</td>
<td>5 847</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

a/ Dentro del paréntesis se encuentra el número de factores calculado usando el procedimiento de Bai y Ng (2002).

2. Estimación de las regresiones de cointegración

a) Estimación de los coeficientes de cointegración país por país

Se procede ahora con probar la hipótesis de export-led growth en el largo plazo. Se comienza con las regresiones por nivel para el país i. Según la hipótesis mencionada (i) $\gamma_i > 0$, (ii) e_{it}, es estacionario. Las estimaciones país por país se reportan en el cuadro 5. En las primera tres columnas se presentan las estimaciones MCO de α, β y γ. Es bien sabido que si (25)
representa una relación de cointegración verdadera, las estimaciones MCO son superconsistentes. Sin embargo, como anteriormente se señaló con respecto a los métodos de estimación en panel, dichas estimaciones se ven afectadas por sesgos asintóticos a menudo que los regresores sean estrictamente exógenos, de manera que los errores estándar MCO generalmente no pueden utilizarse para inferencias válidas. De esta manera, en las restantes tres columnas del cuadro 5 se presenta el estimator de mínimos cuadrados ordinarios completamente modificados (MCO-CM) de Phillips y Hansen (1990). Estas estadísticas están diseñadas de tal manera que resultan libres de sesgos de endogeneidad y proporcionan estimaciones consistentes de los errores estándar, las cuales pueden ser usadas para hacer inferencia.

Como se muestra en el cuadro 5, las estimaciones del parámetro \(\gamma_i \) de MCO y MCO-CM regularmente son muy diferentes al valor teórico establecido para que se cumpla la hipótesis de export-led growth. En la mayoría de los casos, la estimación del parámetro no tiene el signo correcto. Solamente en 12 países se encuentra un coeficiente positivo para \(\gamma \) y dentro de este grupo, únicamente cinco naciones tienen una estimación del coeficiente positiva y estadísticamente significativa al nivel del 5% (Bangladesh, Camerún, Côte d'Ivoire, Gabón y, en el margen, Guatemala). En resumen, el análisis de país por país arroja poca evidencia en favor de la hipótesis de export-led growth.

Lo que más llama la atención de estos resultados es que los coeficientes asociados a la variable población ocupada (fuerza de trabajo) son altos en la mayoría de los países, y significativos también, en comparación con el resto de las variables; 12 cabe mencionar que también el factor capital explica de manera importante la evolución del PIB; sin embargo, las exportaciones en la mayoría de los casos no parecen influir considerablemente en el PIB.

b) Estimaciones de los coeficientes mediante cointegración en datos de panel

Ahora se lleva a cabo la estimación de las elasticidades de largo plazo del modelo (25), en la cual se emplea el método de MCO completamente modificados propuesto por Pedroni (2000), el cual se resumió en la sección III.3. La variable dependiente es el logaritmo de la diferencia entre el PIB real y las exportaciones reales. Los regresores son la formación bruta de capital real, la fuerza laboral total en cada país y, finalmente, las exportaciones de bienes y servicios en términos reales, todos en logaritmo naturales; la estimación se realiza para el período 1960-2003. En el cuadro 6 se muestran los valores calculados de las elasticidades. El PIB neto de exportaciones está fuertemente influido por el stock de capital, mientras que la variable de fuerza de trabajo tiene un efecto negativo, pero no estadísticamente significativo. Las exportaciones están positivamente relacionadas con la variable dependiente y su coeficiente es estadísticamente significativo; el valor de la elasticidad es de 0,244.

12 Como se verá más adelante, con las estimaciones resultantes de utilizar datos de panel no estacionarios, el valor del coeficiente asociado a la población ocupada no es tan alto, además de no resultar estadísticamente significativo; la razón de este resultado es que la estimación de datos de panel (estimación apilada) hace que los coeficientes sean parecidos en todos los países. Las estimaciones en datos de panel son mejores que las de series de tiempo, en este caso porque el estimador puede promediar los enormes errores de medición de la variable proxy para la fuerza de trabajo (que se incluye en el modelo).
Cuadro 5

ESTIMACIONES DE LA RELACIÓN DE COINTEGRACIÓN PAÍS POR PAÍS

<table>
<thead>
<tr>
<th>País</th>
<th>Estimaciones MCO</th>
<th>Estimaciones MCO-CM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>Argentina</td>
<td>0,42</td>
<td>1,62</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0,02</td>
<td>0,51</td>
</tr>
<tr>
<td>Benin</td>
<td>0,02</td>
<td>1,63</td>
</tr>
<tr>
<td>Brasil</td>
<td>0,63</td>
<td>0,64</td>
</tr>
<tr>
<td>Camerún</td>
<td>0,31</td>
<td>0,33</td>
</tr>
<tr>
<td>Chile</td>
<td>0,25</td>
<td>1,24</td>
</tr>
<tr>
<td>Colombia</td>
<td>0,43</td>
<td>1,05</td>
</tr>
<tr>
<td>Rep. del Congo</td>
<td>0,62</td>
<td>0,05</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>0,39</td>
<td>0,74</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>0,43</td>
<td>0,12</td>
</tr>
<tr>
<td>Rep. Dominicana</td>
<td>0,33</td>
<td>1,23</td>
</tr>
<tr>
<td>Ecuador</td>
<td>0,59</td>
<td>0,32</td>
</tr>
<tr>
<td>Egipto</td>
<td>0,21</td>
<td>1,06</td>
</tr>
<tr>
<td>El Salvador</td>
<td>0,32</td>
<td>0,36</td>
</tr>
<tr>
<td>Gabón</td>
<td>0,38</td>
<td>0,34</td>
</tr>
<tr>
<td>Ghana</td>
<td>0,08</td>
<td>1,63</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0,08</td>
<td>1,07</td>
</tr>
<tr>
<td>Haití</td>
<td>0,18</td>
<td>0,19</td>
</tr>
<tr>
<td>Honduras</td>
<td>0,04</td>
<td>0,65</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0,31</td>
<td>3,51</td>
</tr>
<tr>
<td>Kenya</td>
<td>0,55</td>
<td>1,87</td>
</tr>
<tr>
<td>Rep. de Corea</td>
<td>0,30</td>
<td>2,10</td>
</tr>
<tr>
<td>Lesotho</td>
<td>0,23</td>
<td>2,45</td>
</tr>
<tr>
<td>Madagascar</td>
<td>0,21</td>
<td>0,52</td>
</tr>
<tr>
<td>Malawi</td>
<td>0,10</td>
<td>1,32</td>
</tr>
<tr>
<td>Mauritia</td>
<td>-0,65</td>
<td>5,20</td>
</tr>
<tr>
<td>México</td>
<td>0,34</td>
<td>1,90</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>0,35</td>
<td>0,08</td>
</tr>
<tr>
<td>Pakistán</td>
<td>0,29</td>
<td>1,64</td>
</tr>
<tr>
<td>Paraguay</td>
<td>0,41</td>
<td>1,39</td>
</tr>
<tr>
<td>Perú</td>
<td>0,08</td>
<td>0,95</td>
</tr>
<tr>
<td>Filipinas</td>
<td>0,54</td>
<td>1,60</td>
</tr>
<tr>
<td>Ruanda</td>
<td>0,12</td>
<td>0,67</td>
</tr>
<tr>
<td>Senegal</td>
<td>0,03</td>
<td>0,96</td>
</tr>
<tr>
<td>Sudáfrica</td>
<td>0,55</td>
<td>1,51</td>
</tr>
<tr>
<td>Tailandia</td>
<td>0,39</td>
<td>1,76</td>
</tr>
<tr>
<td>Togo</td>
<td>0,24</td>
<td>1,25</td>
</tr>
<tr>
<td>Trinidad y Tabago</td>
<td>0,30</td>
<td>1,23</td>
</tr>
<tr>
<td>Uruguay</td>
<td>0,25</td>
<td>1,02</td>
</tr>
<tr>
<td>Zambia</td>
<td>0,15</td>
<td>0,88</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Nota: Los errores estándar aparecen entre paréntesis.
Cuadro 6

ESTIMACIONES DE MCO MODIFICADOS COMPLETAMENTE, 40 PAÍSES, 1960-2003

<table>
<thead>
<tr>
<th>Variable</th>
<th>Elasticidad</th>
<th>Desviación estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión</td>
<td>0,921</td>
<td>0,03</td>
</tr>
<tr>
<td>Trabajo</td>
<td>-0,019</td>
<td>0,09</td>
</tr>
<tr>
<td>Exportaciones</td>
<td>0,244</td>
<td>0,03</td>
</tr>
</tbody>
</table>

$R^2 = 0,997$

Fuente: Elaboración propia.

A fin de ofrecer una explicación sobre la dinámica de las elasticidades durante el período de análisis, en los gráficos 1 a 3 se reportan los valores de las elasticidades junto con sus límites superior e inferior construidos a partir de los errores estándar. El método utilizado para obtener estos valores es el de regresión rolada (rolling regression). Básicamente se comienza calculando los valores de las elasticidades, utilizando el periodo 1960-1980 y adelantando un año más tanto en el año inicial como en el final; es decir, el segundo conjunto de elasticidades se calculan con base en el periodo 1961-1981, continuando así hasta el último periodo que abarca los años 1983-2003.

Lo interesante de estos resultados es que el coeficiente asociado a la variable inversión se incrementa; el valor del factor población ocupada es siempre no significativo y asume valores negativos en el periodo 1978-1998. Finalmente, las elasticidades de la variable exportaciones son siempre positivas, pero nótese que el impacto sobre la variable dependiente disminuye durante el último periodo considerado.

Gráfico 1

Fuente: Elaboración propia.
Gráfico 2

REGRESIONES MÓVILES: ELASTICIDAD DEL FACTOR TRABAJO Y ERRORES ESTÁNDAR INFERIOR Y SUPERIOR, 1980-2000

Fuente: Elaboración propia.

Gráfico 3

REGRESIONES MÓVILES: ELASTICIDAD DE LAS EXPORTACIONES TOTALES Y ERRORES ESTÁNDAR INFERIOR Y SUPERIOR, 1980-2000

Fuente: Elaboración propia.
3. Pruebas de cointegración

a) Resultados de las pruebas de cointegración país por país

Como se realizó anteriormente, con el fin de permitir una comparación completa de los resultados de las pruebas aplicadas país por país con los obtenidos al aplicar las pruebas en datos de panel, se utilizaron los procedimientos más populares existentes actualmente, es decir, el procedimiento en dos etapas de Engle-Granger (1987) y el de Johansen (1991) para comprobar la existencia de cointegración en cada uno de los 40 países. La prueba de Engle y Granger (1987) examina la estacionariedad de los residuales obtenidos mediante MCO de la regresión de cointegración para cada país i. Bajo la hipótesis de no cointegración, los residuales de la relación de cointegración estimada no son estacionarios, mientras que bajo la hipótesis alterativa los residuales son estacionarios. Podemos comprobar la hipótesis nula inspeccionando las estadísticas t de la regresión.

$$\Delta \hat{\epsilon}_t = \rho \hat{\epsilon}_{t-1} + \sum_{j=1}^{p} \phi_j \Delta \hat{\epsilon}_{t-j} + \nu_t$$ \hspace{1cm} (26)

De esta manera, bajo la hipótesis nula de no cointegración $\rho = 0$ en (26), y la alternativa $\rho < 0$, los resultados país por país de la prueba de cointegración de Engle-Granger (1987) se reportan en los cuadros 7a y 7b. La hipótesis nula puede ser rechazada solamente para 6 países de los 40 incluidos en la muestra. De esta manera, usando la prueba de Engle-Granger sobre la base de país por país, se concluye que no hay en general una relación de cointegración entre las exportaciones netas, el factor capital, trabajo y exportaciones; es decir, si se trata de hacer inferencias usando estas estimaciones, lo más probable es que se enfrentaría a la bien conocida dificultad de tratar con una regresión espuria.

En la segunda columna, también se reportan los resultados de la prueba de la traza de Johansen (1991).13 La estadística de la traza se obtiene de la estimación de máxima verosimilitud de un modelo de vector de corrección del error y, como en el caso de la prueba anterior, la no cointegración es la hipótesis nula de la prueba de la traza. Obsérvese que ahora la estadística de la traza rechaza la nula de cointegración a favor de la alternativa de cointegración para 27 (30) países de los 40 en desarrollo al nivel de significancia del 5% (10%). Dada la insuficiencia de la evidencia encontrada para favorecer el cumplimiento de la hipótesis de export-led growth sobre la base de resultados país por país, ahora se introduce el análisis empírico de las pruebas de cointegración en el contexto de datos de panel.

b) Prueba de cointegración en datos de panel

En el cuadro 8 se presentan las estadísticas de prueba de cointegración basadas en la t de Kao (1999) y Pedroni (1999) calculadas para comprobar la hipótesis del export-led growth.

13 El análisis VAR de la prueba incluye un término constante, como en el caso de las regresiones utilizadas para las pruebas ADF.
Cuadro 7a
RESULTADOS DE LA PRUEBA DE COINTEGRACIÓN
PAÍS POR PAÍS

<table>
<thead>
<tr>
<th>País</th>
<th>Prueba aumentada de Engle y Granger (1987) (a)</th>
<th>Prueba de la traza de Johansen (1991) (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>-3,02</td>
<td>52,41 b/</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>-3,54</td>
<td>72,57 c/</td>
</tr>
<tr>
<td>Benin</td>
<td>-2,48</td>
<td>46,45 a/</td>
</tr>
<tr>
<td>Brasil</td>
<td>-3,00</td>
<td>38,55</td>
</tr>
<tr>
<td>Camerún</td>
<td>-3,36</td>
<td>47,22 b/</td>
</tr>
<tr>
<td>Chile</td>
<td>-2,76</td>
<td>44,90 a/</td>
</tr>
<tr>
<td>Colombia</td>
<td>-2,35</td>
<td>57,84 c/</td>
</tr>
<tr>
<td>República del Congo</td>
<td>-4,01</td>
<td>65,55 c/</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>-2,00</td>
<td>63,89 c/</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>-3,80</td>
<td>62,97 c/</td>
</tr>
<tr>
<td>República Dominicana</td>
<td>-2,58</td>
<td>48,55 b/</td>
</tr>
<tr>
<td>Ecuador</td>
<td>-2,78</td>
<td>59,41 c/</td>
</tr>
<tr>
<td>Egipto</td>
<td>-1,38</td>
<td>4,198</td>
</tr>
<tr>
<td>El Salvador</td>
<td>-2,55</td>
<td>36,79</td>
</tr>
<tr>
<td>Gabón</td>
<td>-4,28 b/</td>
<td>84,46 c/</td>
</tr>
<tr>
<td>Ghana</td>
<td>-3,44</td>
<td>70,89 c/</td>
</tr>
<tr>
<td>Guatemala</td>
<td>-0,84</td>
<td>66,41 c/</td>
</tr>
<tr>
<td>Haití</td>
<td>-5,16 c/</td>
<td>76,18 c/</td>
</tr>
<tr>
<td>Honduras</td>
<td>-2,09</td>
<td>45,41</td>
</tr>
<tr>
<td>Indonesia</td>
<td>-2,72</td>
<td>50,12</td>
</tr>
<tr>
<td>Kenia</td>
<td>-2,61</td>
<td>43,72</td>
</tr>
<tr>
<td>República de Corea</td>
<td>-3,23</td>
<td>52,94 b/</td>
</tr>
<tr>
<td>Lesotho</td>
<td>-4,25</td>
<td>68,31 c/</td>
</tr>
<tr>
<td>Madagascar</td>
<td>-1,83</td>
<td>35,9</td>
</tr>
<tr>
<td>Malawi</td>
<td>-4,27 b/</td>
<td>47,77 b/</td>
</tr>
<tr>
<td>Mauritania</td>
<td>-3,95 a/</td>
<td>92,31 c/</td>
</tr>
<tr>
<td>México</td>
<td>-1,08</td>
<td>48,2 b/</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>-3,34</td>
<td>53,95 b/</td>
</tr>
<tr>
<td>Pakistán</td>
<td>-1,34</td>
<td>69,44 c/</td>
</tr>
<tr>
<td>Paraguay</td>
<td>-2,92</td>
<td>5,101 b/</td>
</tr>
<tr>
<td>Perú</td>
<td>-2,54</td>
<td>43,77</td>
</tr>
<tr>
<td>Filipinas</td>
<td>-2,71</td>
<td>38,26</td>
</tr>
<tr>
<td>Rwanda</td>
<td>-3,65</td>
<td>39,2</td>
</tr>
<tr>
<td>Senegal</td>
<td>-4,79 b/</td>
<td>48,82 b/</td>
</tr>
<tr>
<td>Sudáfrica</td>
<td>-5,05 c/</td>
<td>64,72 c/</td>
</tr>
<tr>
<td>Tailandia</td>
<td>-3,62</td>
<td>72,59 c/</td>
</tr>
<tr>
<td>Togo</td>
<td>-3,77</td>
<td>43,37</td>
</tr>
<tr>
<td>Trinidad y Tabago</td>
<td>-3,17</td>
<td>34,51</td>
</tr>
<tr>
<td>Uruguay</td>
<td>-3,41</td>
<td>6,192 c/</td>
</tr>
<tr>
<td>Zambia</td>
<td>-2,43</td>
<td>66,07 c/</td>
</tr>
</tbody>
</table>

Notas: a/, b/ y c/ indican niveles de significancia al 10%, 5%, 1%, respectivamente.

(a) Prueba *one-sided (lower-tail)* de la hipótesis nula que las variables no están cointegradas. Phillips-Ouliaris (1990) valores críticos al 10%, 5% y 1% iguales a -4,88, -4,22, y -3,92 respectivamente. (b) Prueba *one-sided (upper-tail)* de la hipótesis nula que las variables no están cointegradas. Osterwald-Lenum (1992) valores críticos al 10%, 5% y 1% iguales a 43,95, 47,21, y 54,46, respectivamente.
Cuadro 8

ESTADÍSTICAS DE PRUEBA DE COINTEGRACIÓN EN DATOS DE PANEL,
40 PAÍSES, 1960-2003

<table>
<thead>
<tr>
<th>Pruebas de Kao (1999)</th>
<th>Valor de la prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF_i</td>
<td>-36,510</td>
</tr>
<tr>
<td>DF_i^*</td>
<td>-31,391</td>
</tr>
<tr>
<td>$ADF_i (4)$</td>
<td>-4,870</td>
</tr>
<tr>
<td>Pruebas de Pedroni (1999)</td>
<td></td>
</tr>
<tr>
<td>Panel t (no paramétrica)</td>
<td>-1,6941</td>
</tr>
<tr>
<td>Panel t (paramétrica)</td>
<td>-190,955</td>
</tr>
<tr>
<td>Grupo t (no paramétrica)</td>
<td>-1,776</td>
</tr>
<tr>
<td>Grupo t (paramétrica)</td>
<td>-1,895</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Todas las estadísticas de prueba siguen una distribución normal estándar y bajo la hipótesis alternativa de cointegración diverge a menos infinito. De esta manera, al observar los valores de las pruebas, inmediatamente se percata de que todos son menores a -1.654, correspondiente al valor crítico al 5%. Esto significa que se debe rechazar la hipótesis nula de no cointegración. 14

Recuérdese que en el análisis país por país, se indicaba que sólo en cinco países (Bangladesh, Camerún, Côte d'Ivoire, Gabón y Guatemala) se encontró apoyo a favor de la hipótesis. A fin de comprobar la robustez de los resultados, se llevaron a cabo las pruebas de cointegración de Kao (1999) y Pedroni (1999), excluyendo a los cinco países ya mencionados. 15 los resultados se presentan en el cuadro 9.

La prueba de Kao continúa rechazando la hipótesis nula de no cointegración (tengase en cuenta que valores menores a -1.654 significa que se rechaza la hipótesis nula); la prueba de Pedroni también rechaza la hipótesis nula, pero en la prueba de grupo (-1.418) únicamente se rechaza la nula al 10% de nivel de significancia.

14 Obsérvese que estas pruebas son válidas solamente si los regresores no están cointegrados; para una mejor explicación sobre este punto, véase el documento de Banerjee y otros (2005).

15 Conviene hacer una aclaración con respecto al análisis econométrico en datos de panel; los resultados en este tipo de análisis no dependen de la manera en que los datos de sección cruzada estén ordenados. Las pruebas econométricas en panel no son combinaciones ponderadas de las pruebas de series de tiempo, de manera que el cambio en el orden no modifica el valor de las pruebas.
Cuadro 9

ESTADÍSTICAS DE PRUEBA DE COINTEGRACIÓN EN DATOS DE PANEL, 35 PAÍSES, 1960-2003

<table>
<thead>
<tr>
<th>Pruebas de Kao (1999)</th>
<th>Valor de la prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF_i</td>
<td>-34,640</td>
</tr>
<tr>
<td>DF_i^*</td>
<td>-31,636</td>
</tr>
<tr>
<td>$ADF_i (4)$</td>
<td>-5,728</td>
</tr>
<tr>
<td>Pruebas de Pedroni (1999)</td>
<td></td>
</tr>
<tr>
<td>Panel t (no paramétrica)</td>
<td>-1,562</td>
</tr>
<tr>
<td>Panel t (paramétrica)</td>
<td>-168,208</td>
</tr>
<tr>
<td>Grupo t (no paramétrica)</td>
<td>-1,432</td>
</tr>
<tr>
<td>Grupo t (paramétrica)</td>
<td>-1,418</td>
</tr>
</tbody>
</table>

Otra de las preguntas que puede surgir al revisar los resultados obtenidos hasta el momento, es qué sucede cuando se realiza la prueba de cointegración sin la variable L. Recuérdese que en el cuadro 6 dicha variable resultó estadísticamente no significativa. Así, se realizaron las mismas pruebas sin tomar en cuenta la variable L. Los resultados aparecen en el cuadro 10.

Cuadro 10

ESTADÍSTICAS DE PRUEBA DE COINTEGRACIÓN EN DATOS DE PANEL, 40 PAÍSES, 1960-2003

<table>
<thead>
<tr>
<th>Pruebas de Kao (1999)</th>
<th>Valor de la prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF_i</td>
<td>-36,919</td>
</tr>
<tr>
<td>DF_i^*</td>
<td>-31,341</td>
</tr>
<tr>
<td>$ADF_i (4)$</td>
<td>-4,702</td>
</tr>
<tr>
<td>Pruebas de Pedroni (1999)</td>
<td></td>
</tr>
<tr>
<td>Panel t (no paramétrica)</td>
<td>-1,473</td>
</tr>
<tr>
<td>Panel t (paramétrica)</td>
<td>-134,881</td>
</tr>
<tr>
<td>Grupo t (no paramétrica)</td>
<td>-1,925</td>
</tr>
<tr>
<td>Grupo t (paramétrica)</td>
<td>-1,984</td>
</tr>
</tbody>
</table>

Como puede observarse, los resultados no se modifican con respecto a los obtenidos en el cuadro 8; la hipótesis nula de no cointegración se rechaza en ambas pruebas al nivel de significancia del 5%. En el cuadro 11 se encuentran los valores de las elasticidades cuando se excluyen los 5 países anteriormente mencionados, cuando se excluye a la variable L, así como a los 5 países y, finalmente, se presentan los valores de los coeficientes cuando se excluye solamente la variable L.
Puede observarse que los valores de los coeficientes varían muy poco; con lo anterior se puede decir que los resultados obtenidos en el análisis de datos de panel son robustos. Así, es posible señalar que la evidencia obtenida del modelo estimado muestra en primer término que el crecimiento económico está liderado por la inversión (formación bruta de capital en términos reales), y que las exportaciones en segundo término son un motor importante para promoverlo. Esta evidencia a favor de la promoción de la inversión apoya los hallazgos de Taylor (1998) y Wacziarg (2001), quienes encuentran que la inversión es un vínculo clave para que se tenga un efecto positivo en el crecimiento económico. Asimismo, se apoyan los resultados de Levine y Renal (1992) y Sala-i-Martin (1997), que establecen que las tasas de inversión parecen tener una correlación robusta con el incremento del PIB.
VI. ¿POOling O NO POOling?

En la última década, el supuesto fundamental que subyace en los modelos apilados (pooled models) —parámetros homogéneos— ha sido puesto en duda y se han propuesto estimadores alternativos, basados en parámetros heterogéneos (véase Baltagi, 2005, pp. 201-205 para una revisión). A pesar de la proliferación de estos estimadores heterogéneos, se conoce relativamente poco acerca de sus propiedades en el trabajo empírico. En lo que sigue, lo que se pretende es analizar el desempeño de estos estimadores de parámetros heterogéneos; se cree que ésta es la primera vez que se presenta evidencia del desempeño de estos estimadores en el contexto de la hipótesis de export-led growth.

De los resultados de las secciones anteriores quedó claro que existe mucho más consenso en el cumplimiento de la hipótesis de export-led growth si se apilan los datos y se utilizan las técnicas econométricas de datos de panel; además, este resultado es mucho más robusto que los obtenidos de las regresiones país por país. Nótese que éstas usan solamente 44 observaciones (número de años en cada nación), y las pruebas de raíces unitarias y/o cointegración no tienen poder en contra de la hipótesis alternativa. Así, debido a que al apilar (pool) los datos se encuentra apoyo a la hipótesis, es útil analizar si las restricciones de homogeneidad inherentes al proceso de agrupación son consistentes con la información. Si se inspeccionan las estimaciones país por país del cuadro 5 se notará que los coeficientes no son homogéneos, pues difieren bastante entre los países considerados tanto en los estimadores obtenidos por MCO como por MCO-CM usados en el análisis.

Ahora se considera una prueba formal para la restricción de que los coeficientes sean homogéneos entre los países $\alpha_i = \alpha$, $\beta_i = \beta$, $\gamma_i = \gamma$ para $i=1, \ldots, 40$. Para esto se utiliza una prueba estándar propuesta en Baltagi (2005, p. 54). Bajo la hipótesis nula de homogeneidad, la prueba se distribuye como una F con 177 y 1.640 grados de libertad en el numerador y denominador, respectivamente. Utilizando tanto los estimadores MCO y los MCO-CM, la prueba rechaza fuertemente la hipótesis nula de homogeneidad. Los valores de las pruebas son 29,22 y 192,95 para los estimadores MCO y MCO-CM, respectivamente. En general, de los datos se encuentra poca evidencia para los supuestos de homogeneidad de los coeficientes entre países, los cuales son inherentes a los estimadores en datos de panel en la hipótesis de export-led growth.

La falta de apoyo estadístico a los supuestos de homogeneidad nos coloca en un dilema. Cuando se comprueba la hipótesis del export-led growth sobre la base de país por país, en general no se encuentra evidencia a favor de ésta. Sin embargo, para el caso de datos de panel, se encuentra evidencia en apoyo al cumplimiento de la hipótesis.

Lo interesante es que Pesaran y otros (1999) obtienen resultados similares en sus estudios de funciones de consumo agregado —la muestra consiste en 24 países de la OCDE para el período 1962-1993— y consumo de energía (10 países en desarrollo de Asia para el período 1974-1990). Ellos encuentran elasticidades de largo plazo muy diferentes a lo que dicta la teoría, mientras que las estimaciones de los coeficientes de largo plazo obtenidas mediante técnicas de
los datos de panel van más en línea con lo que predice la teoría. Ante el rechazo de las restricciones de homogeneidad, los autores argumentan que hay un sesgo en las estimaciones de los coeficientes de las unidades individuales debido a variables omitidas específicas a la muestra o a errores de medición que están correlacionados con los regresores. Si los coeficientes fueran los mismos entre las unidades de sección cruzada individuales, y si las correlaciones responsables del sesgo no fueran sistemáticas (en promedio serían cero), entonces la apilación (*pooling*) sería apropiada. En este caso, las estimaciones apiladas son informativas y tienen contenido económico a pesar del rechazo de las restricciones de homogeneidad.

Las investigaciones de Baltagi, y otros (2000) ofrecen resultados paralelos. Ellos comparan estimadores apilados (*pooled*) y heterogéneos. Las estimaciones obtenidas mediante técnicas de datos de panel están en línea con lo que dice la teoría, mientras que algunas de las estimaciones heterogéneas de las elasticidades precio de demanda (que arrojan un signo positivo) son poco convincentes. Como en nuestro caso, la prueba implementada rechaza la hipótesis nula de que las estimaciones de los coeficientes sean las mismas entre las unidades de sección cruzada. A pesar del rechazo de la hipótesis nula, Baltagi y otros (2000) sugieren apilar, debido a que las estimaciones obtenidas generan mejores pronósticos *out-of-sample*, especialmente en horizontes de tiempo largos, así como estimadores más creíbles en términos de lo que dicta la teoría económica. Por lo tanto, se realiza un ejercicio de pronóstico *out-of-sample* similar utilizando los datos de la muestra. Se calcula la raíz cuadrada promedio de los errores de predicción a partir de la regresión país por país y también de la regresión con datos de panel y se consideran pronósticos en horizontes de 1 a 20 años. De esta manera, para llevar a cabo el pronóstico a 20 años se procede en tres pasos: 1) se descartan los últimos 20 años de la muestra (esto es, se descarta el periodo 1984-2003); 2) se estima el modelo especificado anteriormente, tal y como se ha hecho en los análisis de series de tiempo y de datos de panel, y 3) se realiza el pronóstico 20 años adelante (1984-2003). De la misma manera, para realizar un pronóstico a 19 años se descartan primero las últimas 19 observaciones (1985-2003), después se estima el modelo y, finalmente se pronostica 19 años adelante (1985-2003) y así sucesivamente.

En el cuadro 12 se encuentra el ratio (o razón) de los errores cuadráticos medios correspondiente a la estimación homogénea (esto es, estimación apilada) y los errores cuadráticos medios correspondientes a las estimaciones heterogéneas. La razón (o ratio) se calcula tanto para los estimadores MCO como para los obtenidos por MCO-CM.

Obsérvese que las estimaciones homogéneas generan mejores pronósticos en un horizonte de 20 a 14. Las estimaciones heterogéneas arrojan mejores predicciones en un horizonte más corto. Así, si se adopta la posición de Baltagi y otros (2000), podríamos favorecer las estimaciones apiladas de la hipótesis del *export-led growth* debido a que generan mejores pronósticos en horizontes más largos y arrojan estimaciones más plausibles en cuanto a la existencia de una relación positiva entre exportaciones y PIB.
Cuadro 12

COMPARACIONES DE DESEMPEÑO DE LOS PRONÓSTICOS
OUT-OF-SAMPLE

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Estimadores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCO</td>
</tr>
<tr>
<td>20</td>
<td>0.95</td>
</tr>
<tr>
<td>19</td>
<td>0.95</td>
</tr>
<tr>
<td>18</td>
<td>0.96</td>
</tr>
<tr>
<td>17</td>
<td>0.95</td>
</tr>
<tr>
<td>16</td>
<td>0.93</td>
</tr>
<tr>
<td>15</td>
<td>0.95</td>
</tr>
<tr>
<td>14</td>
<td>0.96</td>
</tr>
<tr>
<td>13</td>
<td>1.01</td>
</tr>
<tr>
<td>12</td>
<td>1.04</td>
</tr>
<tr>
<td>11</td>
<td>1.07</td>
</tr>
<tr>
<td>10</td>
<td>1.11</td>
</tr>
<tr>
<td>9</td>
<td>1.18</td>
</tr>
<tr>
<td>8</td>
<td>1.26</td>
</tr>
<tr>
<td>7</td>
<td>1.31</td>
</tr>
<tr>
<td>6</td>
<td>1.40</td>
</tr>
<tr>
<td>5</td>
<td>2.12</td>
</tr>
<tr>
<td>4</td>
<td>2.24</td>
</tr>
<tr>
<td>3</td>
<td>2.46</td>
</tr>
<tr>
<td>2</td>
<td>2.63</td>
</tr>
<tr>
<td>1</td>
<td>2.77</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Coakley y otros (2000) trabajan en cuestiones interesantes relacionadas con el apilamiento (pooling). Los autores analizan las propiedades en pequeñas muestras de los estimadores apilados bajo una variedad de procesos generadores de datos a través de experimentos bootstrapping. Específicamente, ellos muestran que los estimadores apilados generan inferencias distorsionadas cuando los coeficientes verdaderos son heterogéneos. Así, se lleva a cabo un experimento similar y se emplea un procedimiento bootstrapping. Para este propósito, se adapta el método de filtrado propuesto por Chang, Park y Song (2000) para series individuales. Básicamente el método consiste en los siguientes pasos:

- **Paso 1**: Estimar la ecuación (25) para cada país individual a fin de obtener los residuales \(\hat{e}_{it} \) y define \(w_{it} = (\Delta \hat{e}_{it}, \Delta x_{it}^\prime) \), donde \(x_{it} = (\ln K_{it}, \ln L_{it}, \ln X_{it}) \) , lo cual básicamente significa usar los estimadores presentados en el cuadro 5.

16 La técnica del bootstrapping se usa para obtener una descripción de las propiedades en el muestreo de los estimadores empíricos, utilizando la muestra de datos propiamente, más que amplios resultados teóricos.
• **Paso 2:** Usar el método de estimación de filtrado en el siguiente \(\text{VAR}(p) \):

\[
w_{it} = \Phi_1 w_{i,t-1} + \cdots + \Phi_p w_{i,t-p} + \varepsilon_{it},
\]

y obtener \(\tilde{\varepsilon}_{it} \) por medio del reemplazamiento de los residuales centrales estimados \(\tilde{\varepsilon}_{it} = \frac{\sum_{t=1}^{T} \varepsilon_{iT}}{T} \). Finalmente, construir las muestras bootstrap \(\hat{w}_{it} \) recursivamente, usando:

\[
\hat{w}_{it} = \hat{\Phi}_1 \hat{w}_{i,t-1} + \cdots + \hat{\Phi}_p \hat{w}_{i,t-p} + \tilde{\varepsilon}_{it},
\]

Dados los valores iniciales \(\hat{w}_{it} = w_{it} \) for \(t = 1, \ldots, p + 1 \).

• **Paso 3:** Definir \(\hat{w}_{it} = (A \hat{\varepsilon}_{it}, A \hat{x}_{it}) \) de manera análoga como \(w_{it} = (A \varepsilon_{it}, A x_{it}) \) y obtener las muestras bootstrap \(\hat{\varepsilon}_{it} \) y \(\hat{x}_{it} \) a través de la integración de \(A \hat{\varepsilon}_{it} \) y \(A \hat{x}_{it} \), es decir, \(\hat{\varepsilon}_{it} = \hat{\varepsilon}_{i0} + \sum_{t=1}^{T} A \hat{\varepsilon}_{it} \) y \(\hat{x}_{it} = \hat{x}_{i0} + \sum_{t=1}^{T} A \hat{x}_{it} \). Posteriormente, generar el valor bootstrap para \(\ln \tilde{N}_{it} \), utilizando los coeficientes estimados en el paso 1.

• **Paso 4:** Estimar (25) usando las muestras bootstrap para cada país y calcular la estimación de panel. En este documento hemos considerado 1.000 replicas.

Así, se tiene un proceso generador de datos, en el cual los coeficientes subyacentes son heterogéneos (y que en general, como se ha visto, no apoyan el cumplimiento de la hipótesis de export-led growth). En el cuadro 13 se encuentra el resumen de estadísticas para las distribuciones empíricas.

Cuadro 13

RESUMEN DE ESTADÍSTICAS PARA LAS ESTIMACIONES APILADAS DE MCO Y MCO-CM CUANDO EL PROCESO GENERADOR DE DATOS VERDADERO ES HETEROGÉNEO

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Desv. Est.</th>
<th>Máximo</th>
<th>Mínimo</th>
<th>Mediana</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0,088</td>
<td>0,090</td>
<td>0,332</td>
<td>-0,227</td>
<td>0,088</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0,652</td>
<td>0,190</td>
<td>1,275</td>
<td>0,058</td>
<td>0,638</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0,085</td>
<td>0,100</td>
<td>0,444</td>
<td>-0,231</td>
<td>0,088</td>
</tr>
<tr>
<td>MCO-CM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0,062</td>
<td>0,086</td>
<td>0,333</td>
<td>-0,238</td>
<td>0,063</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0,738</td>
<td>0,171</td>
<td>1,219</td>
<td>0,238</td>
<td>0,740</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0,073</td>
<td>0,099</td>
<td>0,443</td>
<td>-0,306</td>
<td>0,074</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Los resultados sugieren que es probable encontrar un coeficiente positivo para la variable de exportaciones, aun si el verdadero proceso generador de datos no apoya el cumplimiento de la hipótesis de export-led growth. Sin embargo, las simulaciones bootstrap muestran que aunque el coeficiente es positivo no es estadísticamente significativo. Así, aunque las simulaciones al estilo Coakley y otros (2001) sugieren que el apilamiento de datos cuando el proceso generador de datos verdadero es heterogéneo puede producir un coeficiente positivo, y que por lo tanto apoye el cumplimiento de la hipótesis de export-led growth, el mismo análisis muestra que se puede esperar un coeficiente estadísticamente no significativo, lo cual difiere de los resultados presentados en el cuadro 6, en donde el coeficiente si es estadísticamente significativo.

Resumiendo, en esta sección se revisa, más de cerca, en términos econométricos, las pruebas de panel utilizadas en el análisis de la hipótesis de export-led growth. Se indica que para una muestra de 40 países en desarrollo analizados durante el período 1960-2003, en fuerte contraste con las pruebas país por país, el análisis de datos de panel apoya el cumplimiento de la hipótesis. Específicamente, mientras que ambos enfoques sugieren que la variable PIB neto de exportaciones, la inversión (formación bruta de capital), la fuerza laboral y las exportaciones de bienes y servicios no son estacionarias, solamente en las estimaciones usando técnicas de datos de panel cointegrados se encuentra apoyo a favor del cumplimiento de la hipótesis. Además, se demuestra que, mientras que el análisis país por país rechaza la hipótesis de que las variables están cointegradas, con la excepción de un número limitado de países, las pruebas de cointegración en datos de panel indican de manera contundente que las variables están cointegradas.

Como se reportó en el capítulo III, el análisis de datos de panel es un enfoque poderoso para analizar variables no estacionarias, especialmente cuando las variables tienen un número limitado de observaciones temporales, pero que están disponibles para un gran número de países. En este caso, se ha demostrado que las pruebas de raíces unitarias en panel y las pruebas de cointegración tienen mayor poder, mientras que el análisis de series de tiempo normalmente muestra un poder que no difiere del tamaño de las pruebas (véase por ejemplo Karlsson y Löthgren, 2000 y Gutiérrez, 2003). De esta manera, nuestros resultados sugieren que antes de concluir que la hipótesis de export-led growth no se cumple sobre la base de un estudio país por país, y si están disponibles datos para un gran número de países, podría ser provechoso recurrir al análisis de datos de panel.

Se concluye que los datos rechazan la hipótesis de homogeneidad de que todos los coeficientes son iguales entre los países. Curiosamente, resultados similares aparecen en Baltagi, y otros (2000) y Pesaran y otros (1999); se comparte su visión de que las estimaciones de datos de panel no deberían necesariamente ser desechadas sobre la base de pruebas de restricciones de homogeneidad solamente. Pesaran y otros (1999) argumentan que los procedimientos de estimación en datos de panel pueden eliminar ciertos sesgos que afectan a las estimaciones país por país. Baltagi y otros (2000) sugieren que las estimaciones de panel deben usarse si ofrecen mejores pronósticos que las estimaciones país por país. Así, se llevó a cabo una comparación de pronósticos a la Baltagi y otros (2000). Se muestra que las estimaciones en datos de panel generan mejores pronósticos, especialmente en un horizonte de largo plazo y los resultados pueden sugerir que los métodos de panel tienden a generar estimaciones de largo plazo, mientras que las estimaciones país por país tienden a dar estimaciones de corto plazo. También se desarrolla un simulación de Monte Carlo, similar a las de Coakley y otros (2001). Se encuentra
que es probable hallar evidencia a favor del cumplimiento de la hipótesis del *export-led growth* utilizando datos de panel, a pesar de que el proceso generador de datos esté caracterizado por una estructura heterogénea, la cual no apoya el cumplimiento de dicha hipótesis. Sin embargo, el mismo análisis *bootstrapping* sugiere que en este caso se debe encontrar evidencia de una elasticidad de las exportaciones no significativa estadísticamente; este resultado difiere de lo que se encontró con las estimaciones en datos de panel que resulta positiva, así como fuertemente significativa en términos estadísticos.

En esta parte es importante señalar específicamente dos debilidades del análisis econométrico y que serán objeto de investigación en un futuro cercano; en primer lugar, en la estimación se incluye como variable independiente a las exportaciones totales de bienes y servicios; en secciones precedentes se comentó que no todos los tipos de productos (y servicios exportados) pueden promover el crecimiento económico; sin embargo, para los 40 países involucrados en la muestra no fue posible encontrar información homogénea que desagregara a las exportaciones por sectores o por actividad económica, por lo que el análisis se lleva a cabo en términos de exportaciones reales de bienes y servicios.

En segundo lugar, en el análisis econométrico se utilizaron datos que cubrían el periodo 1960-2003; es un hecho que durante estos años las economías en desarrollo incluidas en la muestra sufrieron cambios estructurales derivados de modificaciones en la política económica o por otras razones que efectivamente provocaron cambios en la estructura de su economía. Debe señalarse que en esta investigación no se dejó completamente fuera este aspecto; recuérdese que a través de las regresiones móviles se mostró cómo han variado los valores de los coeficientes en los distintos periodos y cómo la importancia de las exportaciones en la promoción del crecimiento económico ha venido disminuyendo a partir de finales de los noventa. La razón por la cual un análisis de cambios estructurales dentro del contexto de datos de panel no estacionarios está pendiente, es básicamente porque su desarrollo teórico y aplicación empírica son de muy reciente difusión; basta señalar que algunos documentos serios utilizando estas técnicas han comenzado a aparecer en la segunda mitad de la década actual. Sin embargo, en un futuro cercano este análisis puede ser incorporado en el contexto de la hipótesis del *export-led growth*.

En este documento se examinó de manera crítica la aplicación de las técnicas de series de tiempo, por una parte, y las de datos de panel no estacionarios, por la otra a un problema macroeconómico específico, como es el caso de la hipótesis del export-led growth.

Los resultados difieren según la técnica aplicada. Para el caso de las series de tiempo no estacionarias, sólo cinco naciones tienen una estimación del coeficiente asociado a la variable exportaciones reales positivo y estadísticamente significativo al nivel del 5% (Bangladés, Camerún, Côte d’Ivoire, Gabón y, en el margen, Guatemala). Por otra parte, los resultados de las estimaciones al utilizar técnicas de datos de panel, las cuales pueden brindar resultados más robustos bajo ciertas condiciones en comparación con las series de tiempo, apuntan al cumplimiento de la hipótesis de export-led growth para el grupo de países considerados durante el periodo 1960-2003. Cabe señalar que las 40 naciones en desarrollo incluidas en la muestra fueron seleccionadas con base únicamente en la disponibilidad de información completa para las series incluidas en la estimación. En consecuencia, no se hizo diferenciación alguna con respecto, especialmente, al tipo de especialización de sus exportaciones (en bienes minerales, manufactureros o servicios), la aplicación o no de políticas de promoción de exportaciones, así como al grado de apertura comercial. Todos estos elementos pueden influir en el dinamismo de las exportaciones y su capacidad de arrastre al resto de la economía local. Una selección más rigurosa de la muestra podría haber conducido a resultados econométricos diferentes.

En esta investigación también se encontró que la importancia relativa de la variable exportaciones ha venido disminuyendo, sobre todo a fines de la década de los años noventa, mientras que la elasticidad de la formación bruta de capital es mayor y su importancia en la determinación del crecimiento económico ha aumentado considerando la década actual. Esta evidencia podría favorecer políticas que promuevan la inversión y apoyan los hallazgos de Taylor (1998) y Wacziarg (2001), quienes encuentran que la inversión es un determinante clave para que se tenga un efecto positivo en el crecimiento económico. Asimismo, se apoyan los resultados de Levine y Renal (1992) y Sala-i-Martin (1997), que establecen que las tasas de inversión parecen tener una correlación robusta con el incremento del PIB.

Se mostró también que mientras que es necesario imponer supuestos de homogeneidad sobre los coeficientes de cointegración en el contexto de datos de panel, tales supuestos no encuentran apoyo en los datos porque las pruebas formales rechazan la restricción de homogeneidad. Estos resultados no son nuevos en el análisis econométrico en datos de panel; resultados similares aparecen por ejemplo en Baltagi y otros (2000) y Pesaran y otros (1999) en diferentes contextos. Así, de la misma manera que estos autores, se cree que las estimaciones en panel no deberían ser necesariamente rechazadas sobre la base de pruebas de restricciones de homogeneidad solamente. Como lo señala Pesaran y otros (1999), los procedimientos de estimación en datos de panel pueden eliminar ciertos sesgos que afectan a las estimaciones país por país.
Una simulación de Monte Carlo à la Coakley y otros (2001) sugiere que es probable encontrar un coeficiente positivo para la variable de exportaciones, a pesar de que el verdadero proceso generador de datos no apoye el cumplimiento de la hipótesis de *export-led growth*. Sin embargo, el mismo análisis muestra que, aunque se tendría que esperar un coeficiente positivo, también se tendría que esperar que el mismo coeficiente no fuera estadísticamente significativo. De esta manera, el experimento de Monte Carlo apoya la estimación de panel del coeficiente asociada a la variable exportaciones, que es positivo y significativo de manera contundente.

Los hallazgos de esta investigación sugieren prudencia al utilizar las distintas técnicas econométricas disponibles, particularmente las de series de tiempo no estacionarias y datos de panel no estacionarios, debido a que los resultados de las estimaciones pueden variar —en ocasiones, considerablemente—, dependiendo de los supuestos que se asuman, de la muestra de países que se tenga, del periodo de análisis, entre otros. Asimismo, en el caso de este estudio en particular, se recomienda cautela al derivar lineamientos de política económica para los países en desarrollo respecto de la hipótesis de crecimiento económico liderado por el crecimiento de las exportaciones, basados únicamente en los resultados de las estimaciones econométricas.

REVISIÓN MÍNIMA DE LA LITERATURA (2001-2006)

HIPÓTESIS DE CRECIMIENTO LIDERADO POR LAS EXPORTACIONES

<table>
<thead>
<tr>
<th>Autor (es)</th>
<th>País (es)</th>
<th>Años incluidos en el estudio, método y variables incluidas</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu-Qarn A.S. y S. Abubader (2001)</td>
<td>Argelia, Egipto, Irán, Israel, Jordán, Moroco, Sudán, Túnez, Turquía.</td>
<td>El periodo de análisis varía entre países, el año inicial en algunos es 1966 y el final 1996. Datos de series de tiempo. Método: Prueba de raíces unitarias: ADF. Prueba de cointegración: Engle y Granger y el procedimiento de Johansen; modelo de corrección de error (corto y largo plazo); causalidad de Granger (se aplica en caso de ausencia de cointegración entre las variables). Variables incluidas: PIB real como variable dependiente y como variables independientes a las exportaciones totales reales, las exportaciones manufactureras reales y a las importaciones reales, todas las series se estiman en logaritmos.</td>
<td>No todas las exportaciones contribuyen igualmente al crecimiento económico. Existe causalidad positiva que va de las exportaciones de bienes manufactureros al crecimiento económico, solamente en aquellos casos en los que los países cuentan con una participación relativamente alta de exportaciones manufactureras dentro del total de exportaciones. Si los principales productos exportados son primarios, estos países están propensos a episodios largos de caída en el ritmo de crecimiento debido a las fluctuaciones en los precios de tales bienes. Los autores sugieren un análisis más detallado a nivel sectorial para conocer qué sectores influyen más en el crecimiento económico.</td>
</tr>
</tbody>
</table>
(Continuación)

<table>
<thead>
<tr>
<th>Autor (es)</th>
<th>País (es)</th>
<th>Años incluidos en el estudio, método y variables incluidas</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hossain A. Mohammed y Neil Diaz Karunaratne (2001)</td>
<td>Bangladesh</td>
<td>1974-1999, información trimestral. Datos de series de tiempo. Método: Pruebas de raíces unitarias: ADF y PP</td>
<td>El estudio señala que existe una relación de largo plazo y estable entre la expansión de las exportaciones y el crecimiento económico en Bangladesh. No hay evidencia que apoye el hecho de que las exportaciones de manufacturas se hayan convertido en el nuevo motor de crecimiento; se señala que son las exportaciones totales el principal motor de crecimiento económico.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cointegración: Engle-Granger, Johansen Causalidad multivariada de Granger VAR (innovation accounting). Los autores evalúan el modelo a través del encompassing principle y pruebas no anidadas. VECM (vector error correction model) presenta mejores propiedades en muestras pequeñas. Variables incluidas: PIB real que no incluye al sector exportador, producción manufacturera real que no contiene a las exportaciones manufactureras; exportaciones totales reales, las exportaciones reales de manufacturas y a la inversión.</td>
<td></td>
</tr>
<tr>
<td>Medina-Smith E.J. (2001)</td>
<td>Costa Rica</td>
<td>1950-1997. Datos de series de tiempo. Método: Pruebas de raíces unitarias: DF y ADF. Pruebas de cointegración: Engle-Granger y Johansen (máxima verosimilitud). El método de dos etapas de Engle-Granger se usa en primera instancia y también se utiliza el de Modelo de Corrección de Error en una etapa debido a que el primero tiene bajo poder en muestras pequeñas. Variables incluidas: PIB real, la inversión interna bruta real o la formación bruta de capital fijo real, la población y las exportaciones de bienes y servicios en términos reales. Todas las variables están en logaritmos.</td>
<td>Se halló respaldo a la hipótesis de crecimiento económico liderado por las exportaciones, aunque los efectos de largo plazo de las exportaciones sobre el crecimiento económico fueron más pequeños comparados con los efectos de los factores de producción tradicionales (capital y trabajo) que también se incluyen en la estimación.</td>
</tr>
</tbody>
</table>
- **Chee Keong Choong, Zulkornain Yusop y Venus Khim-Sen Liew (2002)**
 - **País**: Malasia
 - **Años incluidos en el estudio**: 1959-2000
 - **Método**: Pruebas de raíces unitarias: ADF y PP; Cointegración, Johansen y Joselius; Causalidad de Granger VAR (cointegración multivariada).
 - **Resultados**: La hipótesis de crecimiento liderado por las exportaciones es válida para el caso de Malasia tanto en el corto como en el largo plazo. El modelo de corrección de error señala que la tasa de crecimiento de la formación de capital y las importaciones tienen un impacto positivo en el crecimiento.

 - **Variables incluidas**: PIB real, exportaciones reales, importaciones reales de bienes de consumo, formación bruta de capital fijo, fuerza de trabajo (medida por la población total) y el tipo de cambio.

- **Titus O. Awokuse (2003)**
 - **País**: Canadá
 - **Método**: Pruebas de raíces unitarias de ADF y Phillips-Perron; prueba de cointegración de Johansen; causalidad de Granger basada en modelos de vectores de corrección del error y vectores autorregresivos; prueba CUSUMQ para análisis de cambio estructural.

 - **Resultados**: Además de encontrar evidencia que apoya la HCELE en el corto plazo, los resultados del análisis de cointegración y el VAR apoyan también el cumplimiento de la hipótesis en el largo plazo.

 - **Variables incluidas**: PIB real, exportaciones reales, términos del intercambio reales (valor unitario de las exportaciones dividido por el valor unitario de las importaciones), empleo en el sector manufacturero como proxy para el factor trabajo, formación bruta de capital como proxy de capital y el índice de producción industrial de todas las naciones desarrolladas como proxy para un choque externo en la producción.
<table>
<thead>
<tr>
<th>Autor (es)</th>
<th>País (es)</th>
<th>Años incluidos en el estudio, método y variables incluidas</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herzer Dierk, Felicitas Nowat-Lehmann y Boris Siliverstovs (2004)</td>
<td>Chile</td>
<td>1960-2001. Datos de series de tiempo. Método: Pruebas de raíces unitarias: Perron y Kapetanios (permite dos cambios estructurales). Prueba de cointegración: procedimiento en dos etapas de Engle-Granger y el de Johansen y Joselius. Exogeneidad débil (causalidad en el sentido de Granger). Para la causalidad de largo plazo se emplea una prueba de exogeneidad débil (VECM), se checa la robustez de las estimaciones a través de MCO dinámicos, que es similar a la prueba de cointegración de Johansen, pero que es mejor cuando se tienen muestras pequeñas. Variables incluidas: La ecuación a estimar para Chile involucra como variable dep. al log natural del PIB descontadas las exportaciones, y como vars. indep. a las importaciones reales de bienes de capital, exportaciones reales de bienes manufactureros, exportaciones reales de productos primarios, al número total de gente empleada, y al stock de capital en términos reales (todo en logaritmo natural).</td>
<td>Existe una relación de largo plazo entre capital, trabajo, bienes de capital importados, exportaciones de manufacturas, exportaciones de bienes primarios y PIB, que no incluye exportaciones. Se encontró causalidad de largo plazo que va del resto de las variables al PIB. Los resultados se pueden interpretar como evidencia de efectos promotores de productividad de las exportaciones manufactureras y de efectos limitantes en la productividad de las exportaciones de bienes primarios. Son más importantes las exportaciones de manufacturas para el crecimiento del PIB en el largo plazo y la productividad. Ambos sectores contribuyen, pero la influencia del sector manufacturero es mayor.</td>
</tr>
</tbody>
</table>

/Continúa
<table>
<thead>
<tr>
<th>Autor (es)</th>
<th>País (es)</th>
<th>Años incluidos en el estudio, método y variables incluidas</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silvesterstovs Boriss y Dierk Herzer (2005)</td>
<td>Chile</td>
<td>1960-2001. Datos de series de tiempo. Método: VAR no restringido transformado en la forma de corrección de error. Prueba de cointegración de Johansen (máxima verosimilitud con información completa). Causalidad de Granger. Variables incluidas: PIB del sector no exportable, stock de capital en términos reales, trabajo (número total de gente empleada cada año), importaciones reales de bienes de capital, exportaciones reales de bienes manufacturados y exportaciones reales de productos minerales.</td>
<td>El documento se centra en el impacto de las exportaciones manufactureras y de minerales en el crecimiento de la productividad y cómo las exportaciones en estos sectores, vía el incremento de la productividad, afectan el crecimiento económico (esto se responde a través del método de Johansen). Las exportaciones de bienes manufactureros causan en el sentido de Granger a la producción; este resultado apoya la hipótesis de crecimiento económico liderado por las exportaciones. Se encuentra evidencia de efecto de incremento en la productividad a causa de las exportaciones de bienes manufacturados y de limitante de la productividad a causa de las exportaciones de minerales. Existe una relación de largo plazo entre capital, trabajo, importaciones de bienes de capital, exportaciones de minerales, por una parte, y PIB sin exportaciones por otra.</td>
</tr>
<tr>
<td>Autor (es)</td>
<td>País (es)</td>
<td>Años incluidos en el estudio, método y variables incluidas</td>
<td>Resultados</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Bahmani-Oskooee, Claire Economidou y Gour Gobinda (2005)</td>
<td>61 países en desarrollo entre los que se encuentran los centroamericanos y México.</td>
<td>1960-1999. Datos de panel. Método: Prueba de raíz unitaria: La desarrollada por Im, Pesaran y Shin. Esta prueba permite heterogeneidad en los interceptos y en los coeficientes de pendiente. Cointegración: Utiliza la técnica de panel cointegrado. Variables incluidas: En la estimación se usa una función de producción que tiene como argumentos al trabajo, capital, a las exportaciones y a las importaciones, debido a que se considera que estas dos últimas influyen en la productividad del país. Cuando las exportaciones se usan como variable dependiente, hay evidencia de cointegración. Sin embargo, la relación desaparece cuando la producción es la variable dependiente. La implicación es que las políticas orientadas al crecimiento deberían impulsar a las exportaciones en el largo plazo.</td>
<td></td>
</tr>
</tbody>
</table>

/Continúa
<table>
<thead>
<tr>
<th>Autor (es)</th>
<th>País (es)</th>
<th>Años incluidos en el estudio, método y variables incluidas</th>
<th>Resultados</th>
</tr>
</thead>
</table>

Fuente: Elaboración propia y complementado con información del documento de Medina-Smith (2001). “Is the export-led growth hypothesis valid for developing countries?”, Policy Issues in International Trade and Commodities, study series Nº 7, UNCTAD.
BIBLIOGRAFÍA

______ (2006b), “Simple tests for cointegration in panel with structural breaks”, University of Sassari, inédito.

_____ (2001), Institutions, integration, and geography: In search of the deep determinants of economic growth, Center for International Development, John F. Kennedy School of Government, Harvard University, septiembre.

