PULP AND PAPER ADVISORY GROUP FOR LATIN AMERICA

E/CN, 12/702
FAO/ETAP/1922
ThO/Lat? 46 December 1964.

ORIGINAL: BIVGIISH

ECONOMIC COMMISSION FOR LATIN AMERICA
FOOD AND AGRICULTURE ORGANIZATION
bureau of technical assistance operations

PROGRAMMING DATA AND CRITERIA FOR THE PULP AND PAPER INDUSTRY

Santiago, Chile

Explanatory note

Because it is difficult to find a common denominator which could reflect the average production conditions of the pulp and paper incustry in Latin merica, the North-American figures and practices have been adapted in this document. The main differences between these and the Latin American practices are higher productivity and saleries of the labour force, and lower capital charges. Because of these factors, the economies of scale in direct manufacturing in Latin fmerica are not so markedly greater then those in investrnent.

In spite of these differences, this document fulfills that purpose for which it was prepared: to shov the effects of economies of scele in some branches of the pulp and paper industry.

The data presented herein cannot be applied to individual projects without changing them substantially according to the local conditions in each case.

F/CN. $12 / 70^{\circ}$?
Page iii

TABLE OF CONTENTS

Page

1. Introduction. 1
2. Product selection 2
3. Process characteristics and investigation mothod of equipment inputs and of fixed investment 3
4. Determination of labour inputs. 7
5. Determinntion of inputs of raw material, power, fuel, and maintenance. 8
6. Components of financisl investment 11
7. Determination of costs 15
8. Conclusions. 23
List of innexes 25

1. Intreduction

The purpose of this study is to provide industrial programming data and criteria and to demonstrate the economies of scale in the pulp and paper industry at levels suited to the growing Latin American industry. The pulp and paper industry may be considered as "capital intensive" of the same order of magnitude as the basic steel and oil refining industries.

The Food and Agriculture Organization (FAO) and other organizations of the United Nations have explored this field from several points of view, principally in papers presented at the FAO/ECLA/BTAO Latin American meeting of experts on the pulp and paper industry in Buenos Aires in 1954 and at the FAO/ECAFE/BTAO conference on pulp and paper development in Asia and the Far East in Tokyo in 1960. The pertinent United Nations publications relating to industrial programming data in the pulp and paper industry are tabulated in Annex 1.

This report has been prepared for presentation to the United Nations Seminar on Industrial Programing planned for Sao Paulo, Brazil in March 1963. Nonetheless, it is believed that the programming data presented herein will be found to be useful in the preliminary planning for pulp and paper development throughout the industrially developing areas of the world.

The definitions of the symbols used throughout this study are presented in Annex 2.

The data presented herein should be applied to specific situations only with a full understanding of the many variables that may be involved. The data should be considered as being of greater accuracy in a relative sense within this study than in an absolute sense. For a specific project, therefore, there is no substitute for a careful study of that particular situation.

Examination of the economics of plants utilizing combinations of processes to produce more than one type of product have been avoided herein in order not to unnecessarily complicate the presentation.

E/CN. $12 / 702^{\circ}$
Page 2

As a practical mattēr, however, many a pulp and paper mill, in order to properly serve its natural market and to attract, enough demand to make the plant economic, will offer several types of products, of ten including products made of paper and paperboard. Such combinations, of course, tend to increase the unit cost of the individual product above what the unit cost would be if the plant were to produce only one product or a very closely related group of products.

2. Product Selection

The seven products studied were selected to provide a representative cross-section of the major products of the pulp and paper industry. They are:

1. Unbleached kraft pulp
2. Bleached kraft pulp
3. Unbleached krэft pulp and paper
4. Bleached kraft pulp and paper
5. Newsprint (partially integrated)
6. Unbleached semichemical pulp and paper
7. Bleached semichemical pulp and paper

The first two cases represent intermediate products enjoying a wide world market, are normally made from coniferous wood, and are usually sold in baled air-dry sheets to non-integrated paper mills. The cases studied are so based.

The third and fourth cases are the integrated extensions of the first two cases. These cases are based upon the manufacture of bag, sack; and wrapping papers in rolls. No paperboards are included in these cases.

The fifth case, newsprint in rolls, utilizes low-density broad-leaved wood for the groundwood portion of the furnish, and purchased semi-bleached kraft pulp for the chemical pulp portion. Although the use of broad-leaved wood is uncammon in the manufacture of newsprint, the technology is believed to be well-established. Because of the preponderance of broadleaved woods in Latin America, the foregoing basis was selected as being
particularly applicable to this region. The partially-integrated arrangement was selected because the necessary small chemical puIp mill required for full integration can seldom be justified in the small to medium-sized newsprint mill. If an attractive market can be found for excess chemical pulp, the economics of the fully-integrated newsprint mill can usually be improved by making the chenical pulp mill several times as large as would be required for newsprint alone. Such a project, then, becomes in effect a combination chemical pulp and newsprint mill, which is a fairly common arrangenent.

The last two cases are based upon the exclusive use of low-density broad-leaved wood in order to simplify the estimates and presentation. In commercial practice the se products are sometines made from a blend of fibers containing a preponderance of the neutral sulphite semichemical hardwood pulp projected herein, but never exclusively frcm such pulp. The sixth case is based upon the manufacture of corrugating board in rolls, and the seventh of bleached uncoated unsupercalendered groundwoodfree book and writing papers in rolls.

As noted individually above, all the cases in which paper is produced are based upon production in the form of rolls, although most of the products are also sold in sheets. This basis was selected in order to simplify the estimates and presentation, and should have no effect upon the principles demonstrated herein. Likewise, the other simplifications described are not expected to have any effect upon the principles involved.

3. Process cheracteristics and investigation method of cquipmont inputa and of fixer investment

This industry is now evolving from a part batch, part continuous process industry to one which is truly continuous process, much like oil refining. The processes utilized herein are all based upon the use of single-line continuous equipment.

Most of the steps in the processes are characterized by considerable flexibility in capacíty. Production can be generally increased above normal capacity at the expense of materials, energy, or degradation of product. For those steps in the process in which only losses of materials or energy are involved, this characteristic does allow for step-wise growth in capacity.

The determination of equipment inputs is relatively simple in that in all major items of equipment single pieces have been provided for each step in the process, and likewise in nearly all cases of minor equipment. Single pieces of equipment are available for nearly all steps in the processes in capacities much grester than those studied herein. Ma.jor equipment is custom-built to the needs of the buyer, so that in a welldesigned plant there is no significant idle time when producing the product for which the plant was designed.

Three plant capacities have been selected for study in the small to medium size range. One or more of these capacities are appropriate to the national markets in most Latin American countries, but are small in relation to the market in the projected Latin American "common market". The daily capacities, operating 24 hours per day, seven days per week, are 50,100 , and 200 metric tons.

Existing pulp mills in Latin America range from many small ones producing only a few tons per day up to several chemical woodpulp mills in the 100 to 200 metric tons per day range. One sulphate woodpulp mill at Laja in Chile produces some 225 tons daily. According to present plans, this mill will soon be increased to a capacity of 625 tons daily. The chemical and semichemical pulp mills of less than 100 tons of daily capäcity generally have no chemical recovery systems, whereas those sulphate pulp mills of 100 tons and larger generally recover their chemicals.

Newsprint mills in Latin America generally range in capacity from 100 to 175 tons daily, although not all newsprint machines are devoted

E/CM.12/702
 Page 5

exclusively to that product. The largest newsprint mill is located at Monte Alegre, Parand, Brazil. This mill is expected to shortly complete construction of a new addition that will increase newsprint capacity to some 425 tons daily.

Other paper and paperboard mills range from many small ones producing only a few tons per day up to several in the 100 to 150 ton range. Most of the latter are multiple paper machine mills, whose economics would not normally be expected to be as favourable as those mills producing the same tonnage on fewer machines.

Annual operating periods in the Latin Americar pulp and paper industry vary widely, but 330 operating days per year may be considered representative, and have therefore been used throughout this study. This allows for numerous holidays and separate shutdowns for major maintenance. General North American practice is to shutdown only for 3 or 4 holidays per year, at which time major maintenance work is begun and at times completed within a holiday, so that operating periods of 350 to 360 days per year are common. On an annual basis, then, the capacities studied are 16500,33000 , and 66000 metric tons. In the foregoing operating periods no provision is made for possible time lost due to lack of orders, strikes, or circumstances beyond the control of management.

Because these 3 capacities have been applied to each of the 7 products listed above, a total of 23 cases are presented herein.

A simplified flow diagram applicable to all the processes studied is presented below. Broken lines indicate application in only part of the processes.

/The method

The method used in detemining fixed investment for each of the 21 cases was tailored to the availability of data. Current prices of most items of major equipment were obtained from the manufacturers of such equipment. Extensive use was made of capital cost estimates contained in a dozen appropriate economic studies loaned by a consulting engineering firm. Lastly; the experience of a member of the FAO/BTAO/ECLA Pulp and Paper Advisory Group in preparing similar economic studies of proposed pulp and paper ventures was drawn upon.

No determination of floor areas required has been made, partly because such data would have little significance because unit building construction costs vary widely according to the type of equipment supported or housed, so that each building is generally useful only for its particular purpose, and partly because extensive engineering effort would have been involved in preparing 21 such estimates. Building costs have therefore been estimated from world-wide experience on previous projects, as have the costs of equipment installation.

4. Determination of labour inputs

Manning tables have been prepared by job title and department, as well as estimates of annual man-hour requirements, for each of the 21 cases. These estinates are based upon good North American practice for modern single-line pulp and paper mills similar to those studied herein. Four men are required to man each round-the-clock post; so that each works an average of 42 hours per week, there being 168 hours in each week. Many variations of shift rotation are practiced, but most involve three shifts of 8 hours each per day, with the fourth man being off duty that day. These estimates are presented in Annex 3.

It has bot been possible within the scope of this study to determine manning practices in the Latin American pulp and paper industry. It appears, however, that in general more workers are required for a given task than in North America. It has been found, throughout the world pulp and paper industry, that there is little variation in unit labour cost for a given product at a given capacity. It is apparently axiomatic that the lower the

E/GN.12/702
Page 8
wage rate, the more people are required to perform a given t ask. It has been demonstrated that there is little difference in innate intelligence between the various peoples of the world, so that the lower productivity of the worker outside North America must be due to one or more of the following factors:

1. Lack of adequate training
2. Lack of adequate supervision and management
3. Lack of labour-savirg equipment
4. Small-scale operations
5. Restrictive labour practices and laws

The foregoing estimates may also be expressed as man-hours per ton of product, as follows:

Unit labor requirements in man-hours per ton of product

Product	Daily capacity in metric tons		
	$\underline{50}$	100	$\frac{200}{}$
Unbleached kraft pulp	14.8	8.4	4.8
Bleached kraft pulp	16.7	9.3	5.3
Unbleached kraft pulp and paper	18.7	10.3	5.8
Bleached kraft pulp and paper	21.1	11.5	6.4
Newsprint (partially integrated)	13.9	8.2	4.9
Unbleached NSSC pulp and paper	13.6	7.8	4.5
Bleached NSSC pulp and paper	17.2	9.6	5.4

5. Determination of inputs of raw material, power,
fucl, and-mantenance
The principal raw material in all cases is, of course, wood. The four kraft cases are based upon the use of coniferous wood, as typified by Chilean plantation insignis pine, which is reported to have an average density of 370 kilograms of bone-dry wood per solid cubic meter of green wood. The other three cases are based upon the use of low-density broadleaved wood, as examplified by the salicaceous species of the Parana delta in Argentina, which are said to have an average density of 450 .
```
E/CN.12/70?
rage }
```

Estimated wood requirements are also based upon pulp yields of. 46 per cent of the weight of the wood in the unbleached kraft cases, 42 per cent in the bleached kraft cases, 90 per cent in the case of groundwood for newsprint, 75 per cent in the unbleached neutral sulphite semi-chemioal (NSSC) case, and 52 per cent in the bleached NSSC case.

The principal chemical requirements are based upon typical consumption rates for plants of the types under study.

The newsprint case is based upon a furnish containing 80 per cent ground-wood produced on site and 20 per cent purchased semi-bleached kraft pulp.

The estimated unit requirements oi wood, woodpulp, and principal chemicals for each of the seven products under study may be surmarized as follows:

Unit raw material requirements per ton of product

Unbleached kraft pulp	5.3	-	60	30	-	-	-	-
Bleached kraft puip	5.8	-	66	70	-	-	90	40
Unoleached kraft pulp and paper	5.5	-	60	30	-	-	-	-
Bleached kraft pulp and paper	6.0	-	66	70	-	-	90	40
$\begin{aligned} & \text { Newsprint(partially } \\ & \text { integrated) } \end{aligned}$	1.5	0.21	-	-	-	-	-	-
Unbleached NSSC pulp and paper	2.7	-	-	-	135	40	-	
Bleached NSSC pulp and paper	3.9	-	-	-	325	125	155	70

$\mathrm{E} / \mathrm{Cin} .12 / \mathrm{O}$
Page 10

The minor variations noted above in the vood recuirements in the kraft cases are the result of different moisture contents of the products, and allowence for fibre losses in papernaking and for shrinkage in bleaching. Pulp is normally sold on the basis of 10 per cent moisture content, whereas the noisture content of paper varies from 5 to 6 per cent according to type.
finor raw materials, operoting supplies, and maintenance materials have been consolidated under "other materials", for the simple reason that the available data provides no breakdow.

Injuuts of electric power and fuel have been determined from estimates of the power and net hent (after heat recovery) recuirements of each denartment in ecch plant. It has been assumed for purposes of this study that all electric power would be purchased, and that all fuel consumed would be industrial fuel oil.

The estimated unit requirements of alectric power and fuel oil for each of the seven products under study may be sumnarized as follows:

Unit electric power and fuel oil requirements per ton of product
Product

Unbleached kraft pulp
$\frac{\text { Electric Power }}{\mathrm{kWh}} \quad \frac{\text { Fuel Oil }}{\mathrm{Kg}}$

Bleached kraft pulp
560
15)

Unble:ched kraft pulp and paper 1050 290
Bleached kreft pulp and paper $1200 \quad 420$
Wewsprint (partially integrated) 1.750280
Unbleached NSSC pulp and paper 900 420
Bleached NSSC pulp and paper I $200 \quad 570$
As noted earlier, maintenance inputs are not available separately, but are of course accounted for in the manufacturing cost estimates.

6. Components of financial investment

Crpital reapuirements for erch of the 21 cases have been estimated by groups of closely related plant functions as follows. The direct erected cost of the structures in each group and the direct erected cast of eruipment in each group have been separately estimeted. To the sum of these two components has been added a 15 per cent allowance for construction overhead and a. 15 per cent allownce for engineering and contingencies to arrive at the plant capital estimates. To these have been added 3 per cent of the plant cepital to allow for interest during construction and 30 per cent of the annual direct nanufacturing cost to allow for working capital to arrive at the estimated total investment reouired in each case.

These hypothetical plants heve been sited, for purposes of this study in a hypothetical rea that is readily accesible to world markets and which contains a reasonable amount of economic infrastructure. No provision has been made in the estimates for import duties and taxes because most countries waive such charges in the case of a new industry approved by the government. Similarly, no provision has been made for price escalation, because such increases are difficult to predict and because prices of pulp and paper nomally keep pace with inflation. Also, in recent years it has been nossible to negotiate fixed-price (in US\$) contracts for most equipment. It would be prudent, however, to make appropriste provision for possible price escelation in the financing of an actual project. Also, no provision has been made for any financing fees, because such fees are not paid in the inajority of pulp and paper projects. Lastly, stort-up expenses have not been capitelized, because in most pulp and paper projects such costs are charged directly to operations. However, short-term funds must be provided for this purpose.

The construction overhead allowance is intended to provide for such items as construction manegenent and supervision; accounting, purchesing, and expediting; temporery shops and services; rental and maintenance of construction equipment; miscellaneous dabour costs such as job clean-up,

/unloading, handling

unloading, handing and storing of materials and ecuinment; employer-paid labour benefits, and contractor's profit. If a construction camp is required, the cost of construction and operation of such a camp is usually included undor construction overhead.

Construction overhead costs generally range between 10 and 30 per cent of the direct costs of structures and equirment, depending largely upon the remoteness of the location. The 15 per cent allowance used herein may be considered appropri te for the hypotheticil location of the hypothetical plants, although the sllowance would not be adecuate for more than a nominal construction cemp to house only a small part of the construction force.

The allovance for engineering and contingencies is intended to provide for a complete engineering scrvice and for the cost of items not included in the preiminary estimes, the need for which may only be revealed during the detailed desicn and construction of the project. This allowance is not intended to provide for rising costs during the construction period.

All other things being equal, engineering expense and certain elements of construction ovoriend can be expected to occur at a higher rate on a smell project than on a lerge one. It is apparent that engineering costs are more closely related to the number of steps in the process than to the size of the plant. However, no data is evailable to measure these factos, so that the alluwances noted above have been applied equally to all cases.

Interest during construction will vary according to interest rates, proportion of borrowed cepital, and the construction period. The allowance of 3 per cent used herein would provide for half the plant capital recuired to be borrowed at 6 per cent interest for the last year of construction, and therefore may be considered to be a reasonoble allowance.

Working cepital recurements vary with inventory levels and terms of purchase and sale, and are therefore most closely related to menufacturing costs. The allowance of 30 per cent of anmual annuricturing cost used herein is believed to be ample for most circunstances.

The capical cost estimates do not provide for the following:
1/ ivo provision is made for any return on equity capital during construction.

1. The costsinvolved in the development of pulpwood supplies or other raw materials. It is believed that the material prices used herein are adequate inducernent for others to provide the capital involved.
2. Capital for housing. It is expected that there is either adequate housing available in the community or that governmentmsupported loans would be available for housing and community facilities.
3. Facilities external to the plant site, such as roads, railways, powertransmission lines, etc. It is expected that such facilities would be provided by others.

The estimtes of total investment and unit investment per daily ton in each of the 21 cases may be summarized as follows:

Product	nent $2 /$	red	mill	S of		
	Deily capacity, metric tons					
	50		100		200	
	lotal	Unit	Total	Unit	Total	Unit
Unbleached kraft pulp	6.0	0.12	8.5	0.085	13.0	0.065
Bleached kraft pulp	8.5	0.17	12.0	0.12	18.0	0.09
Unbleached kraft pulp and paper	9.0	0.18	12.0	0.12	18.5	0.0925
Bleached kraft pulp and paper	11.0	0.22	15.0	0.15	23.0	0.115
Newsprint (partially integrated)) 7.5	0.15	10.0	0.10	15.0	0.075
Unbleached NSSC pulp and paper	7.0	0.14	9.0	0.09	12.5	0.0625
Bleached NSSC pulp and paper	9.5	0.19	13.0	0.13	20.0	0.10

It should be noted that the foregoing estimates do not include provision for electric power generation, bleaching chemical manufacture, nor for chemical recovery plants except in the first four cases. For each product, the basic process design is the same for each size of plant; only the size has been varied.

More detailed capital cost estimates are presented in Annex 4.
2/ For preliminary planning of specific projects, perhaps 25 per cent should be added to these amounts for possible investment in supporting facilities such as those specifically excluded in the text. Only in unusually favourable circunstances could a project carry a higher burden and still be economic; conversely, many proposed ventures might be uneconomic at the basic investments in the above table.
/The effect

The effect of external economics on a puln and paper project can be quite marked, and can spell the difference betwen a profitable and an unprofitable enterprise. In well-developed areas. outsiders often provide, as a means of marketing goods and services, and in the case of governments, to provide employment, the necessary capital for ail the external reouirements, such as those listed before the preceding table, of a new pulp and paper mill. Of course, there are circumstances under which an enterprise finds it necessary from a defensive viewpoint to own or control all or part of these externals, particularly the vital pulpwood supply. Normally, the external capital required in such developed areas is low in relation to plant investment, although under certain circumstances investment in timberlands can become significant.

On the other hand, if a pulp and paper project is to be located in a remote area whose main attraction is a supply of pulpwood, the investment required external to the proposed plant can well exceed that within the plant, and unfortunately there are no local govermments and no established enterprises in such areas to help carry the burden. In such cases, then, the total investinent required rises to the point that an otherwise profitable venture becomes unprofitable.

Between the two foregoing extremes there are of course many possibilities that can be made economically feasible, and such is most often the case in Latin America. Companies often provide such plant externals as pulpwood plantations for part of the requirements, part of the housing and community building recuirements, electric power generation facilities, chemical production facilities, and less often many others; but which, in all cases, require a total external investment that is small in relation to plant investment because there exists a reasonable amount of economic infrastructure in the area.

It may also be of interest to relate the investment required to the number of workers employed in each of the 21 cases. This relationship is presented in the following table.

```
9.1?.70?
Parge 15
```

Product	per work		
	Daily capacity, metric tons		
	50	100	200
Unbleached kraft pulp	\$ 49000	\$ 62000	\$ 82000
Bleached kraft pulp	62000	78000	103000
Unbleached kraft pulp and paper	58000	71000	97000
Bleached kraft pulp and paper	63000	79000	110000
Newsprint (partially integrated)	65000	74000	92000
Unbleached NSSC pulp and paper	63000	70000	84000
Bleached MSSC pulp and paper	67000	82000	112000

The above data emphazise the high investment requirements of the industry; not many industries have higher ratios for new plant. Longestablished North American companies will generally report lower ratios because of the inclusion of employees in activities with low investmentemployee ratios (such as woodcutting, paper product manufacture, and distribution) and because of the inclusion of obsolescent plant.

7. Determination of costs

Direct manufacturing costs have been estimated for each of the 21 cases studied herein. Such costs fall into two categories: those that are directly proportional to production, and those that are not.

For a given process design, consumption rates of all materials, electric power, and fuel are generally uniform. These cost components have been extended at consumption rates shown previously herein and at approximate average free market-world prices ${ }^{3 /}$ to arrive at anual and unit manufecturing costs.

Labcur and administration and overhead costs, however, are disproportionate to production, and vary only moderately with plant size. Labour recuirements have been estimated as described earlier herein, and extended at approximate average hourly labour costs in the North American pulp and paper industry because the manning tables have been established on a.Nortl. American basis.

3/ Prices within certain Latin American countries may be considerably higher tinen world prices.
/Administration and

Administration and overhead allowances have been based upon experience. Actual costs vary greatly from plant to plant, and the allowances used herein make no provision for any unusual charges. The allowances are intended to provide for the cost of supervisory, management, administrative, engineering, and technical personnel, and for insurance, property taxes, and sundry overhead. No provision is made for selling expenses, which are accounted for later in mill-net price estimates.

The direct unit manufacturing cost estimates may be summarized as follows:

Direct unit marufacturing costs $4 /$ in US $\dot{\text { L }}$ per metric ton

Product	Plant capacity in metric tons per day		
	50	100	$\underline{200}$
Unbleached kraft pulp	138	102	83
Bleached kraft pulp	167	127	105
Unbleached kraft pulp and paper	169	124	100
Bleached kraft pulp and paper	200	150	123
Newsprint (partially integrated)	150	119	101
Unbleached NSSC pulp and paper	124	93	75
Bleached ISSC pulp and paper	191	152	130
The detailed manufacturing cost estimates are presented in Annex 5. Similar estimates including certain capital charges to arrive at			
total production cost are presented in Annex 7 and discussed later herein. It may also be of interest to examine the proportions of the major			
groups of ianufacturing cost elements. This relationship is shown in the			

[^0]$$
3 / \mathrm{CN} .2 / 702
$$

Page 17
PERCERTAGES OF WATUPACTURITG COST ELEMENTS

Product \begin{tabular}{c}
Wood and Chemicals

woodpulp | and other |
| :---: |
| materials. |

\hline
\end{tabular}

Plant capacity: 50 metric tons per day

Unbleached kraft pulp	26	7	5	32	30
Bleached kraft pulp	24	12	7	30	27
Unbleached kraft pulp and paper	23	9	8	33	27
Bleached kraft pulp and paper	21	14	9	32	24
Hewsprint (partially integrated)	29	7	13	28	23
Unbleached NSSC pulp and paper	15	12	12	32	29
Bleached ISSC pulp and paper	14	26	11	27	22

Plant capacity: 100 ipetric tons per dav

| Unbleached kraft pulp | 37 | 9 | 7 | 24 | 23 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Bleached kraft pulp | 32 | 16 | 10 | 22 | 20 |
| Unoleached kraft pulp and paper | 31 | 12 | 11 | 25 | 21 |
| Bleached kraft pulp and paper | 28 | 18 | 12 | 23 | 19 |
| Iewsprint (partially integrated) | 38 | 6 | 17 | 21 | 16 |
| Unbleached NSSC pulp and paper | 20 | 16 | 17 | 25 | 22 |
| Bleached NSSC pulp and paper | 18 | 34 | 14 | 19 | 15 |

Plent cepecity: 200 metric tons per dey

Unbleached kraft pulp	44	12	9	17	18
Bleached kraft pulp	39	20	12	15	14
Unbleached kroft pulp and paper	39	15	14	17	15
Bleached kraft pulp and paper	34	22	15	16	13
Newsprint (partially integrated)	44	10	19	15	12
Unbleached ISSCC pulp and paper	25	19	21	18	17
Bleached MSSC pulp and paper	21	40	16	12	11

In the foregoing classifications, fuel oil and electric power have been included under energy, and contingencies have been included under administration and overhead.

In the above table, it will be noted that as productive capacity rises, the proportions of the two cost elements only slightly related to capacity, namely labour and administration and overhead, decrease markedly. In larger capacities than those shown, these elements continue to decline, but less markedly.

It will also be noted that the category "chemicals and other materials" is unusually high in the last product, bleached neutral sulphite semichemical pulp and paper. This is the result of the high cooking and bleaching chemical and paper additive recuirements. The cooking chemicals, about one-third of this category, can best be recovered in conjunction with a kraft pulp mill recovery plant.

In newsprint, the category "wood and woodpulp" is unusually high because of the inclusion of purchased chemical woodpulp. In a fullyintegrated nessprint mill, this category would be the lowest of the seven products. The reasons for selecting the "partially integrated" approach were explained earlier herein.

In plants 100 tons daily and larger, pulpwood is the largest cost element, except in the case of the last product for reasons explained above, and of the next to the last product because of the high pulp yield. This emphasizes the inportance of pulpwood costs.

Graphical representations of the total investrnent, direct manufacturing ani total oroduction cost estinates are presented in Annex 8.

It will be noted from the graph of unit investment recuired versus plent capacity that unit investment can be expected to decline beyond 200 tons of daily capacity. Experience in other studies indicates that the curves becones nearly flat at around 500 tons in most cases. Similarly, unit manufacturing costs are nearly level at around 500 tons.

It is, however, inpossible to generalize upon the minimum economic size for entry into a particular market. This will vary in accordance with the following influences:

1. Product or combination of products
2. Local prices of materials, energy, transportation and labour
3. Degree of tariff protection
4. Degree of natural protection (primarily transport)
5. Design of plant
6. Ability of management

It can be said, however, in view of the plans of the Latin American Free Trade Area to gradually eliminate tariffs between its members, that any new pulp and paper project to produce large-volume products in any of the member countries of less than 200 tons daily capacity should enjoy an unusually favourable situation in order to be economic. The large-volume products include chemical woodpulp, newsprint, kraft bag, sack and wrapping papers, kraft linerboard, corrugating board, and folding boxboard.

Expansion of existing plants carries with it economies of scale that are less than those of single-line plants of the same capacity, but are nonetheless significant. In general, it is more profitable to expand an existing plant than to build a new one for the added capacity. For example, an existing 100 ton plant expanded to 200 tons capacity is more profitable than two 100 ton plants, but not as profitable as a plant built with an initial capacity of 200 tons.
is noted earlier, total production cost estimates reflecting certain capital charges are presented in Annex 7. Depreciation is provided for at a rate of 6.67 per cent per annum on depreciable assets, equivalent to an average usefui life of 15 years. An allowance of ten percent per annum of total capital is intended to provide for interest and profit on investment vithout regard to the proportion of equity and loan capital. However, no provision has been made for income taxes because of their widely varying application in Latin America, which in general are lower than those of North America and Europe.

The total production cost estimates presented in Annex 7 are sumnarized in the following table. The mill net prices shown in the table are approximations based upon world prices. Their derivation is explained later herein.

T/CN: $2 / 2 / 702$
Page 20

UNIT COSTS ARD PRICES IN US* PER UETRIC TON

Product	Capacity (P TPD)	Capital cherges	Direct cost	Total cost	Mill net price
Unbleached kraft pulp	50	58	138	196	110
	100	41	102	143	110
	200	32	83	115	110
Bleached Kraft pulp	50	82	167	249	130
	100	58	127	185	130
	200	44	105	149	130
Unbleached kraft pulp and paper	50	87	169	256	160
	- 100	58	124	182	160
	200	45	100	145	160
Bleached kraft pulp and paper	- 50	108	200	308	190
	100	73	150	223	190
	200	56	123	179	190
Newsprint	50	72	150	222	125
	100	48	119	167	125
	200	36	101	137	125
Unbleached semi-chemical pulp and poper	50	67	124	191	120
	100	44	93	137	120
	200	30	75	105	120
Bleached semi-chemical pulp and paper	50	92	191	283	190
	100	62	152	214	190
	200	48	130	178	190

It will be noted that the economies of scale in direct manufacturing costs are significantly greater than those of investment; ranging roughly from 50 to 100 per cent greater. This of course reflects the importance of the cost elements that vary only slightly with plant size, namely labour and administration and overhead. Also, in only four of the twenty-one cases, all at 200 tons of daily capacity, does the mill net price exceed the total production cost. This would seen to indicate that even 200 ton mills making the mass-produced products may be marginal when meeting world market competition.

In order to evaluate the ability of the 21 hypothetical plants to compete in world markets, gross earnings estimates have been prepared for each case. Approximate mill-net prices for each product have been derived from approximate world prices by deducting appropriate allowance for shipping and selling expenses. Annual net sales have then been derived for each case from the mill-net prices. By deducting therefrom annual manufacturing costs, annual gross earnings have been derived. Gross earnings are earnings before depreciation, interest, and income taxes. Gross earnings as a percentage of total investment have also been calculated for each case. A gross earnings rate of 20 per cent is generally considered in North America as the minimum in order to be attractive to investors, although this minimum rate will of course vary considerably according to circumstances, and may be on the order of 30 per cent in Latin America.

The estimated gross earnings as a percentage of total investment, when competing on the world market, are as follows:

Gross earnings as a percentage of total investment

Product	Capacity of plant in metric tons per day		
	50	100	200
Unbleached kraft pulp	Loss	3	14
Bleached kraft puip	Loss	1	9
Unbleached kraft pulp and paper	Loss	10	21
Bleached kraft pulp and paper	Loss	8	19
Newsprint (partially integrated)	Loss	2	10
Unbleached NSSC pulp and paper	Loss	10	23
Bleached NSSC pulp and paper	Loss	10	20

The detailed mill-net price and gross earnings estimates are presented in Annex 6.

The earnings in the above cases could be measurably improved if the plants were to operate 350 days annually instead of the assumed 330 days.

In general, if the hypothetical plants were to compete in world markets, the 50 ton plants would operate at a loss, the 100 ton plants would have unsatisfactory earnings, and the 200 ton plants would be at best marginally attractive. No great importance should be attached to the earnings differences shown above within the 100 ton plants and within the 200 ton plants.

On the other hand, it is not expected that the Latin American pulp and paper industry will face world competition in the foreseeable future, except in the case of newsprint in Argentina and Brazil, and part of the Chilean exports of newsprint and woodpulp. Argentina produces only token amounts of newsprint, and Brazil's newsprint plant is to reach a capacity of 425 tons daily in 1962, a level adequate to meet world competition. Chile is able to export newsprint and sulphate woodpulp at production levels on the order of 200 tons per day partly because of unusually low wood costs, and partiy because of tariff concessions granted by most of the members of the Latin American Free Trade Area.

3/CN. 12,702
Page 23

8. Conclusions

It is concluded that there are indeed important economies of scale in the pulp and paper industry, particularly at capacities suited to new development in most Latin American countries.

The source of the economies of scale lies in the continuous process nature of the industry. With increasing size of a specific design of plant, labour requirements and administration and overhead costs increase only slightly, so that unit manufecturing costs decline markedly. Labour requirements vary little with size of plant for a given design because most workers are overseers of one or more steps in the process, and because a man can operate a large piece of process equipment as readily as a small one. Only in the handling of raw materials and finished product are more workers required in the larger plant. Similarly, it takes about as many managerial, supervisory, and other administrative employees to administer a large plant as a small one of the same design. Only in the case of insurance and property taxes do overhead costs rise with increasing plant.

Similarly, plant investment requirements do not rise as rapidly as plant size, so that unit investment requirements decrease with increasing plant size of a specific design of plant. This is the case because a piece of process equipment of twice the capacity costs less than twice as much as the smaller one; the same applies to the building to house the equipment, and to the cost of installation. Also, the cost of supporting facilities, such as plant railways and roads, and shops, laboratories and offices, do not rise as rapidly as plant capacity.

In planning for the future development of any pulp and paper industry, whenever and wherever the objective is production at the lowest possible cost, it appears that every effort should be made to build the largest single-line plants possible consistent with anticipated demand during the ensuing few years within a natural market area.
s

```
T/CN. \(12 / 702\)
Page 25
```


List of Annexes

1. UN publications relating to industrial programming data in the pulp and paper industry
2. Definition of symbols
3. Manning tables for pulp ind paper manufacturing cost estimates
4. Sumnary of capital investment
5. Pulp and paper manufacturing cost estimates
6. Mill-net price and gross earnings estimates
7. Total production cost estimates - including capital charges except income taxes
8. Graphs of total investment, direct manufacturing and total production costs.

Annex 1

united nations publications relating to industrial programing data IN THE PULP AND PAFER INDUSTRY

1. FAO/ECLA/BTAO Latin American meeting of experts on the pulp and paper industry: Buenos Aires (1954)
(a) 3.02 Secretariat paper: Amapá - Yucatán. A study of hypothetical pulp and paper mills based on tropical mixed woods
(b) 3.03 Secretariat paper: Mill size, integration, location. A study of investment and production costs in hypothetical pulp and paper mills
(c) 3.1 Influence of mill size and integration on investment and cost, by A.B. Karlstads Mekaniska Werkstad (Sweden)
(d) 3.12 Economics of newsprint production, by P.R. Sandwell, President, Sandwell \& Co.,Itd. (Canada)
2. Chile: Potential pulp and paper exporter, by the FAO/ECLA/ BTAO Pulp and Paper Advisory Group for Latin America: Santiago (1957)
3. FAO/ECAFE/BTAO Conference on pulp and paper development in Asia and the Far East: Tokyo (1960)
(a) Secretariat paper V: Technical and economic aspects of industrial pulp and paper production in the region
(b) Secretariat paper VII. c: Small-scale industrial pulp and paper production
(c) Background paper VII.c.1: Small-scale pulp and paper production by P.R. Sandwell, President, Sandwell \& Co. Ltd. (Canada)
(d) Secretariat paper VII (a): Comparative investment data for different types and sizes of mills
(e) Chapter VIII Appendix A: Comparative investment data for different types and sizes of mills
4. Raw materials for more paper: FAO, Rome (1953).

Annex 2

DEFINITION OF SYMBOLS

ADMT - air-dry metric ton (10 per cent moisture)
ADMTPA - air-dry metric tons per annum
FMT - finished metric ton
Kg - Kilogram
kWh - kilowatt hour
N^{3} - cubic meter
$\mathrm{M}^{3} \mathrm{~s}$ - solid cubic meter (of wood without bark)
M3s/A - solid cubic meiers per annum
MH - man-hour
MT - metric ton
MTPA - metric tons per annum
MTPD - metric tons per day
MWH - megawatt hour (one million watt-hours)
NSSC - neutral sulphito somi-chemical
US\$ - United States dollar
US\$/A - United States dollars per annum
US\$/MT - United States dollars per metric ton
Chemical formulas and cormon names
CaCO_{3} - calcium carbonate: limestone
Cl_{2} - Chlorine:the elemental molecule contains two atoms
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ - sodium carbonate: soda ash
NaOH - sodium hydroxide: caustic soda
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ - sodium sulphate (anhydrous): salt cake
S - sulphur

Manning tables for pulp and paper manupacturing cost estimatas

Item	Unbl	$\begin{aligned} & \text { phed } \\ & \text { pulp } \end{aligned}$	$\mathbf{k r a f t}_{\text {, }}$	Bleat	$\begin{gathered} \text { ohed } \\ \text { pulp } \end{gathered}$		Unbl pulp	ached and	kraft aper		ached and	kraft paper		wipri artia egrat			$\begin{aligned} & \text { ached } \\ & \text { doal p } \\ & \text { d pap } \end{aligned}$	unip	81,08 chem a	$\begin{aligned} & \text { ched } \\ & \text { ineal } \\ & \text { nd pap } \end{aligned}$	$\begin{aligned} & \text { em1~ } \\ & \text { ulp } \\ & \text { er } \end{aligned}$
	$\begin{gathered} 50 \\ M T P D \end{gathered}$	$\begin{aligned} & 100 \\ & \text { MTPD } \end{aligned}$	$\stackrel{200}{200}$	$\begin{aligned} & 50 \\ & \text { MTPD } \end{aligned}$	100	$\begin{aligned} & 200 \\ & \text { MTPD } \end{aligned}$	MTPD	$\begin{aligned} & 100 \\ & \sqrt{4 T P D} \end{aligned}$	$\begin{aligned} & 200 \\ & \text { MTPD } \end{aligned}$	$\begin{aligned} & 50 \\ & M T P D \end{aligned}$	100	$\begin{aligned} & 200 \\ & \text { MITPD } \end{aligned}$	$\begin{aligned} & 50 \\ & \text { MTPD } \end{aligned}$	$\begin{aligned} & 100 \\ & \text { MTPD } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 200 \\ & \text { MTPD } \end{aligned}$	$\begin{aligned} & M^{50} \\ & \hline 1 P D \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & \text { MTPD } \end{aligned}$	$\begin{aligned} & 200 \\ & \text { MTPD } \end{aligned}$	$\begin{aligned} & 50 \\ & M T P D \end{aligned}$	100	$\begin{aligned} & 200 \\ & \text { MTPD } \end{aligned}$
Wood Preparation Plant																					
(2 shifts per day)																					
Foremari	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Scaler				2		2	2	2	2	2	2	2	-	2	2	2	2	2	2	2	2
Wood Handling Equipment Operator	2	4	4	2	4	4	2	4	4	2	4	4	2	2	2	2	2	4	2	2	4
Wood Handling Equipment Helper	2	2	4	2	2	4	2	2	4	2	2	4	-	-	2	-	2	2		2	2
Berkerman	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Chipperman	2	2	2	2	2	2	2	2	2	2	2	2	-	\sim	-	2	2	2	2	2	2
Subtotal	12	14	16	12	24	16	12	14	16	12	14	16	6	8	10	10	12	14	10	12	24
Relief Men (for 7 day. operation)	5	6	2	5	6	7	5	6	7	5	6	7	2	3	4	4	5	6	4	5	6
```Total Groundwood Pulp lifll```	17	20	23	17	20	23	17	20	23	17	20	23	8	21	24	14	17	20	14	17	20
Block Reclaimer													4	4	4						
Grinderman.											-		4	8	16			,			
Screen Tender													4	4	4						
Total							.						12	76	24						
Chemical or Semiohemicel																					
Pulp Mill																					
Chip Reoleimer	4	4	4	4	4	4	4	4	4	4	4	4									
Semichenical Liquor. Maker Pulping Operator	$\overline{4}$	4	4	4	4	4	4	4	4	4	4	4				4	4	4	4	4	4
Washermen and Screen Tender	r 4	4	4 :	4	4	4	4	4	4	4	4	4								4	
Bleacherman ${ }^{\text {a }}$			$\pm$	4	4	4	-	-	-	4	4	4		-		-	*	-	4	4	4
$\therefore$ Total	12	$\overline{12}$	12.	16	16	16 :	$\overline{12}$	12	12	16	16	16				12	$\overline{12}$	12	16	16	16
Chemical Recoẍery and Steam																					
Recovery Boiler Helerator	4	4	4	4	4	4	4	4	4	4	4	4	-	$\square$	-	-	-	-	-	-	-
Steam Boiler Fireman	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4.
Lime XiIn Operator	4	4	4	4	4	4	4	4	4	4	4	4	-	$\ddot{-}$		-	-	-	-	$\stackrel{-}{-}$	-
- Total !	20	20	20	20	20	20	20	20	$\underline{20}$	20	20	20	4	4	4	4	4	4	4	4	4
Paper Mill or Pulp Dryar																					
Stock Preparation Man	"-	$\cdots$	-	-	-	*	4	4	4	4	4	4			4	-	-	-	4	4	4
Adciitives Preparation Man	5	-	$\overline{4}$	$\overline{4}$	$\overline{4}$	5	4	4	4	4	4	4	4	4	4	4	4	$\div 4$	4	4	4
Driver ${ }^{\text {Purchas ed Puip slusherman }}$	2	3	4	$\underline{2}$	3	4	2	3	4	2	3	4	2	3	4	. 2	3	4	2	3.	4
Total	18	19	24	$\underline{16}$	$\overline{19}$	24	38	39	44	42	43	48	36	$3{ }^{3}$	3	30	31	36	42	43	48



Annax 4
SUMMARY OF CAPTTAL INVESTMENT

Desoription	$\begin{gathered} \text { Unbleached kraft pulp } \\ \text { (air-dry in bales } \end{gathered}$			$\begin{aligned} & \text { B1 eached krait pulp } \\ & \text { (air dry in bales) } \end{aligned}$			Unbleached kraft pulp and papar (bag,saok, and wrapping papers)			Blasohed kraft pulp and paper(bag, saok, and wrapping papers)			
	50 MTPD	100 MTPD	200 MTPD	50 MTPD	100 MTPD	200 MTPD	50 MPPD	100 MTPD	200 MTPD	50 MTPD	100 MTPD	200	MTPD
Part A - Structures													
Sito, plant rail and roads, ${ }^{\text {Sawers, }}$, and fira protection US	200 8000 800	230 90000 0000	300000 100000	$\begin{aligned} & 240000 \\ & 100000 \end{aligned}$	280 110 1000	360000 120000	$\begin{aligned} & 240000 \\ & 100000 \end{aligned}$	280000 110000	360000 120000	$\begin{aligned} & 260000 \\ & 1100000 \end{aligned}$	$\begin{aligned} & 310000 \\ & 120 \\ & 000 \end{aligned}$		
Writees, laply and distribution stor	30000	40000	100000	180000	280000	4000000	103000	140000	1200000	190000	300000		
Steam supply and distribution (1nol. fuel storage)	20000	20000	30000	20000	30000	50000	20000	30000	50000	30000	40000		000
Electrio power distrit bution (purchased power)	10000	20000	30000	10000	20000	30000	10000	20000	30000	10000	20000		000
Wood supply and chip production and storage Pulp mill (cooking, weahing, and screening or grinding and			180000		120000	190000	80000	120000	180000	80000	120000		000
soreening-newsprint)	100000	170000	300000	110000	190000	340000	100000	170000	300000	110000	190000		000
Bleach plant (inol. bleach liquor making)	-		-	110000	160000	230000				110000	160000	230	000
Chemical recovery plent	150000	250000	440000	160000	270000	480000	150000	250000	440000	160000	270 000		000
Cooking liquar preparation plant (NSSC)				-									
Paper mill (inel. noll finishing and ehipping)	230-	160 $00^{-}$					370000	480000	760000	340000	470000	800	000
Fulp drying plant (inol, shipping)	230000	260000	370000	190000	340000	400000	-	-	-		-		-
Total atructures US\$	900000	200000	1300000	200000	1800000	26000001	1100000	1500000	2300000	1400000	2000000	3100	
Part B-Equipment													
Site, plant reil and roads, sewers, and fire protection	40000	70000	120000	50000	80000	130000	50000	80000	130000	60000	100000	160	000
Offices, laboratordes, shops and stores	70000	100000	150000	90000	130000	180000	90000	130000	180000	100000	150000	200	
tater supply and distribution	60000	100000	160000	200000	300000	400000	60000	100000	160000	220000	330000		
Steam supply and diatribution (inel, fuel storage)	70000	110000	200000	150000	240000	410000	150000	250000	430000	220000	380000	630	000
Electric power distribution (purehased power)	50000	90000	140000	70000	110000	180000	90000	130003	230000.	100000	150000	250	000
Yood suppiy, chip production and storage	250000	400000	630000	270000	430000	690000	250000	400000	650000	280000	440000	700	000
Pulp mill (oooking, washing, und screoning or grinding and soreaning-inewsprint)	450000	700000	). 200000				450000	700000	1200000				
Bleagh plinnt (incl, bleach liquer making)	)		200	870000	960000	1600000	50		120000	870000	960000	1600	000
Chemioal recovery plent	1100000	500000	2400000	200000	1650000	2600000	1100000	1500000	2400000	1200000	2.650000	2.600	
Cooking 11 cuor proparation plant (VSSC)			-										
Pager mill (incl. roll finishing and shippi Puip drying plant (fnol. shipping)	1010000	1530000	2000000	1000000	1500000	2010000	560000	3110000	4520000	2650000	3140000	4520	000
Total equipment US\$	3100000	4600000	7000000	4400000	6200000	3600000	4800000	64400000	10000000	6200000	8100000	12500	000
Eart 0 - Construction expens es													
Construction Overhead	600000	850000	1300000	850000	1200000	1800000	900000	1200000	1850000	1150000	1500000	2350	000
Enginoering and contingencies	600000	850000	1300000	850000	1200000	1800000	900000	$\frac{1200000}{200}$	1.850000	1.150 .000	1.500 .090	2350	000
-- Total construation expense US\$	1200000	1700000	2600000	1700000	2400000	3600000	1800000	2400000	3700000	2300000	3000000	4700	
Uotel Plant Capital US\$	5200000	7500000	11400000	7300000	10400000	158000007	7700000	10300000	15000000	9900000	13100000	20300	
Interest during somstruction uS\$	150000	200000	300000	200000	300000	500000	250000	300000	500000	300000	400000	600	
Working oapitel 1	650000.	800000	1300000	1000000	$\underline{1} 300000$	$1 \% 00000$	1050000	1400000	2000000	800000	1500000	2100	000
Total invostment	60000008	8500000	13000000	8500000	12000000	18000000	9000000	12000000	18500000	11000000	15000000	23000	000


Desarlption		Newsprint (partially integrated) (hardwood groundwood, purchased chemical pulp)			Unbl. senichemioal pulp and paper (harduood nssc corrugating board)			Bleached samichenioal pulp and paper (hardwood MSSC book and writing papers)		
		50 MTPD	100 MTPD	200 MTPD	50 MTPD	100 MTPD	200 MTPD	50 MTPD .	100 MTPD	200 MTPD
Part A - Struotures										
Site, plant ratiland reade, sewers, and fire protestion	US ${ }^{\text {¢ }}$	200000	230000	300000	200000	230000	300000	240000	280000	360000
Offices, laboratordes, shops and stores		80000	90000	100000	80000	90000	100000	100000	110000	220000
Water supply and distribution		20000	30000	40000	20000	30000	40000	140000	230000	340000
Staam supply and distribution (inci. fuel storage)		30000	40000	60000	30000	50000	70000	40000	60000	100000
Slectric power distribution (purchased power)		20000	30000	40000	10000.	20.000	30000	10000	20000	- 30.000
Hood supply and ohip production and storage		40000	70000	100000	50000	80000	120000	70000	100000	140000
fulp mill (cooking, washing, and soreoning or grinding and screening-news $\bar{i} 1$ int $)$		150000	250000	400000	70000	110000	180000	130000	190000	260000
Sleash plant (incl. bleach 11çuor making)		-	-	-	-			80000	120000	170000
Chemical reoovery plant		-		-	-	-	-		- -	
$\because$ : Cooking liquor preparetion plant ( NSSC )		-	-	-	40000	50000	70000	60000	30000	120000
Papor mill (inol. roil finishing and shipping)		360000	560000	760000	300000	440000	690000	330000	510000	760000
Pulp drying plant (inal, shipping)		-						-	-	-
Total stmuctures   Part B - Equspment	Us\$	900000	1300000	1800000	800000	1100000	1600000	1200000	1700000	2400000
Sites plant rail and roids, sewers, and fire proteotion		40000	70000	220000	40000	70000	120000	50000	BC 000	
Offices, laboratories, shops snd etores		70000	100000	150003	70000	100000	150000	90000	130000	180000
Water supply and distribution (inal fuel atem)			80000	130000		80000	130000	150	230000	330 cos .
Stesm supply and distribution (inol, fuel storage)		190000 120000	330000 200000	550000 360000	250000 700000	430000 120000	730000 200000	330000 100000	550000 150000	930000 250000
Wood supply, chip production and storaga		150000	220000	300000	160000	250000	400000	100 240000	320000	500000
Pulp mili (cooking, washing; and screening or grinding										
and soreaning-newsprint)		800000	1300000	2200000	450000	730000	1300000	740000	1300000	2100000
, Bleach plant (1ncl. bleach liquor making)		-	-	-	-			650000		1200000
Chemioal rooovery plant										
Cooking liquor preparation plant (NSSC)					110000	120000	170000	150000	220000	280000.
, Paper mill (inol. roil finishing and shipping)		2580000	3100000	4490000	2600000	3000000	3500000	2600000	3100000	4500000
$\therefore$ Total equ1pment . Sid	US\$	4000000	5400000	8300000	3800000	4900000	6700000	5100000	6800000	10400000
Part C-Construation expense										
Construction 0verhead		750000	1000000	1500000	700000	900000	1250000	950000	1300000	1900000
Baginearing and oontingencies		750000	1000000	1500000	700000	$900 \cdot 000$	1250000	950 coo	$\underline{1} 300000$	12000000
Total construotion exponse	us\$	1500000	2000000	3000000	1400000	1800000	2500000	1900000	2600000	3800000
Total Plant Capitar	Us $\$$	6400000	8700000	13100000	6000000	7800000	10800000	8200000	11100000	$16600000^{\circ}$
Interest ouring sonstruction	US\$	200000	250000	400000	200000.	250000	300000	250000	300000	500000.
Working sapital		900000	1050000	1500000	800000	950000	1400000	1050000	1600000	2900.000
Total investment	Us\$	7500000	10000000	15000000	7000000	9000000	12500000	9500000	13000000	$20000 \cdot 000$

Annex 5
PULP ANE PAPER MANUFACTURIIR COST ESTMATES




Annex 6
mill - ast price and cross earnines estmates

Item	Units	Unbleached kraft pulp			Bleechod kraft pulp			Unbleached kraft pulp and peper			Bleached kraft pulp and paper		
Approximate World Prioe	US\$/LT	135			255			190			220		
Less Allowances for: - Seling Expense	Us $\$ /$ Tip	5			5			10			10		
Preight Expense	US ${ }_{\text {d }} / \mathrm{Tm}$	20			20			20			20		
Total dectuctions	US $/ 1 / \mathrm{MT}$	25			25			30			30		
Estimated Mill Net Price	US\$/miT	110			230			260			190		
Plant Capacity	MTPD	50	200	200	50	200	200	50	100	200	50	100	- 200
Anmual Not Saies	us $\$ / 4$	1815000	3630000	7260000	2145000	4290000	8580000	2640000	5280000	10500000	3135000	6270000	12540000
Annunl Manufacturing cost	US $\$ / \mathrm{A}$	$\underline{2300000}$	3400000	5500000	2800000	4200000	6900000	2800000	4100000	$\underline{6600000}$	3300000	5000000	8100000
Annual Gross Profit	US $\$ / 4$	(Loss)	230000	1760000	(Lose)	90000	1680000	(Loss)	1180000	3960000	(Loss)	1270000	4440000
Gross Barninge an Investment (bofore depreciation, interest and income texes)	Persent	(Loss)	3	34	(10ss)	1	9	(Loss)	10	31	(Loss)	8	19

Annex 6 (oonoluded)

Item	Units	Nowsprint (Partially integrated)			Unbleached seniohertoal pulp and papor			Bleached seniohemiosl pulp and paper		
Approximate World Prioe	US\$ $/ 14 \mathrm{~T}$		150			145			220	
Less Allowanoes For: Selling Expence	US\$/MT		5			5			20	
Freight Expense	us $\$ / M \mathrm{MT}$		20			20			- 20	
Total deductions	us $\$ / 4 \mathrm{Tr}$		25			25			30	
Estimated M111-Nat. Prioe	US\$/NT		125			120			190	
Plant Capacity	KTPD	50	100	200	50	100	200	50	100	200
Annual Met Sales	US $\$ / \mathrm{A}$	2063000	4125000	8250000	1980000	390000	7.920.000	3235000	6270000	12540000
Annual Manufacturing Cost	US\$/A	2500000	3900000	6700000	2100000	3100000	5000,000	3200000	5000000	8600000
Annual Gross Prorit	[5 \$/A	(Loss)	225000	2550000	(Loss)	860000	2920000	(Loss)	1270000	3940000
Gross Earnings on Investmant (Before depreciation, interest and facome taxes)	Peroent	(Loss)	2	10	(Loss)	10	23	(Loss)	10	20

Annax 7
TOTAL PRODUCTION COST ESTIMATES INCLUDING CAPITAL CHARGES EXCEPT INCOME TAXES
(Dollars)

	Unbl	ached kraf	ft pulp	Blead	hed kraft p	pulp	Unblea and	ohed kraft paper	pulp	Bleached and	ed kraft pul d paper	
	50 MTPD	100 MTPD	200 MTPD	50 MIPD	100 MTPD	200 MPPD	50 MPPD	100 MTPD	200 MTPD	50 MTPD	100 MPPD	200 MTPD
1 Structures	900000	1200000	1800000	1200000	1800000	2600000	1100000	1500000	2300000	1400000	2000000	3100000
2 Equipment	3100000	4600000	7000000	4400000	6200000	9600000	4800000	6400000	10000000	6200000	8100000	12500000
3 Construction expenses	1200000	1700000	2600000	1700000	2400000	3600000	1800000	2400000	3700000	$2300 \quad 000$	3000000	4700000
4 Total plant capital	5200000	7500000	11400000	7300000	10400000	25800000	7700000	10300000	16000000	9900000	13100000	20300000
plus,												
5 Interest during construction	150000	200000	300000	200000	300000	500000	250000	300000	500000	300000	400000	600000
6 Total capital subject to depreciation	5350000	7700000	11700000	7500000	10700000	16300000	7950030	10600000	16500000	10200000	13500000	20900000
plus,												
7 Working capital	650000	800000	1300000	1000000	1300000	1700000	1050000	1400000	2000000	800000	1500000	2100000
8 Total investment	6000000	8500000	13000000	8500000	12000000	18000000	2000000	12000000	18500000	11003000	15000000	23000000
9 Total ennual deprealation ( $6.667 \%$ of " 6 ")	356700	513400	780000	500000	713400	1086700	530000	706700	1100000	680000	900000	1393400
10 Allowance to oover prof and interest ( $10 \%$ of 1811 )	$600000$	850000	1300000	850000	1200000	1800000	900000	1200000	1850000	1100000	1500000	2300000
11 Total capital charges except income texes ( $9+10$ )	956700	1363400	2080000	1   1350   16	1913400	2886700	1430000	1906700	$2550000$	1780000	2400000	$3693400$
12 Total production (in ton	$\text { (e) } 16500$	33000	66000	. 16500	33000	66000	. 16500	33000	66000	16500	33000	66000
13 Capital oharges par uns ( $11 \%$ 12)	58	41	32	82	58	44	87	58	45	108	73	56
14 Direct unit manufseturin oost	$138$	102	83	167	127	105	169	124	100	200	150	123
15 Total unit production cost except income tax	196	243	115	249	185	149	256	282	145	308	223	179
16 Estimated mill net price world basis	110	110	- 110	130	130	138	160	160	160	190	190	190

Annex 7 (ooncludod)

		Newsprim			ached semic	hemioel		and semiohs	atent pulp
	50 MTPD	100 MPPD	200 MTPD					${ }^{1}$	
	50 Mr	1		50 MTPD	100 MTPD	200 MTPD	50 MTPD	100 MTPD	200 MPPD
1 Struotures	900000	1300000	1800000	800000	1100000	1600000	1200000	1700000	2400000
2 Equipnent	4000000	5400000	8300000	3800000	4900000	6700000	5100000	6.800000	10400000
3 Construction expenses	1500000	2000000	3000000	1400000	1800000	2500000	- 1900000	2600000	3800000
Total plant espital	6400000	8700000	13100000	6000000	7800000	10800000	6200000	11100000	16600000
5 Interest during oonstruction	200000	250000	400000	200000	250000	300000	250000	300000	0000
6 Total cap1tal subjeot to dopreoiation	6600000	8-950 000	13500000	6200000	8050000	11100000	8450000	11.400000	17100000
plus,									
7 Working capital	900000	1050000	1500000	$800 \cdot 000$	950000	1400400	1050000	1600000	2900000
8 Total investment	7500000	10000000	25000000	7000000	9000000	12500 -100	9500100	13000000	20000000
9 Total amual depreclation ( $6.667 \%^{2}$ of " ${ }^{11}$ )	440000	596700	900000	413400	536700	740 din	563400	760000	1140000
10 Allowance to oover profit and interest ( $10 \%$ of "B")	750000	1000000	1500000	700000	900000	125000	950000	1300000	2000000
ii Total capital charges except income texes ( $9+10$ )	1190000	1596700	2400000	1113400	1436700	1990000	\$ 513400	2060000	3140000
12 Total produotion (In tons)	16500	33000	66000	16500	33000	66000	16500	33000	66000
13 Capital charges per unit ( $11 \%$ 12)	72	48	$36$	67	44	30	$92$	62	48
14 Direct unit manufacturing cost	250	119	101	124	93	75	192	$\therefore .152$	130
15 Total unit produotion cost axoopt income tarce	222	167	137	191	137	205	283	214	178
16 Estimated mill not prioemorld basis	125	125	125	120	120	120	190	190	190


ANNEX 8	
Figure $I$	B/CNi $12 / 702$

UNIT INVESTMENT REQUIRED
Natural scale
Unit total plant investment
(Millions of dollars per daily ton of capacity)


ANNEX 8	E/0N.12/702
Figure II	

DIRECT UNIT MANUFACTURING COSTS
Matural scale
Direct unit manufacturing costs (Dollars per metric ton)


ANNEX 8 E/GM. $3 / 2 / 702$
Figure III

TOTAL UNIT PRODUCTION COSTS
Natural scale

```
(Dollars per metric ton)
#
```


[^0]:    4/ These costs have been computed on the basis of 330 operating days per annum and a 100 per cent operating ratio. Most new mills reach rated capacity several months after startup and often produce at 10 to 20 per cent above rated capacity within a few years. Further, modern mills tend to experience higher operating ratios than the average.

