CENTRO LATINOAMERICANO DE DEMOGRAFIA CELADE - SANTIAGO

PROGRAMA DE MAESTRIA 1985-1986 SEGUNDO AÑO MAESTRIA EN DEMOGRAFIA

TESIS DE GRADO

TITULO: Estimación de la mortalidad femenina adulta en el tiempo,

a partir del método de orfandad materna.

AUTOR: Luis Rolando Cuenca Berger

ASESUR: Dirk Jaspers-Faijer.

Santiago-Chile

Diciembre - 1986

CELADE - SISTEMA DOCPAL DOCUMENTACION SOBRE PUBLACIONEN AMERICA LATERA

INDICE

IN	VTRODUCCION	1
I.	EL METODO DE ORFANDAD MATERNA	7
	 1.1 El método original propuesto por Brass 1.2 La variante de K.Hill y J. Trussell 1.3 Localización en el tiempo de las estimaciones de 	7 18
	mortalidad femenina adulta	20
	1.3a. Método de W.Brass y E.A. Bamgboye	22 31
	1.3c. La proposición de los profesores J.Chackiel y H.Orellana	35
II.	ESTINACION DE LA MORTALIDAD FEMENINA EN EL TIEMPO A PARTIR DEL METODO DE ORFANDAD MATERNA	36
	2.1 Sensibilídad del método de orfandad respecto al modelo de mortalidad utilizado	37
	2.2 Estructura de la mortalidad femenina adulta de Hon duras	45
	2.3 Uso del modelo de mortalidad de W.Brass	54
	2.4 La estimación de T para el caso de Honduras con los datos de la EDENH II	60
	2.5 El uso de dos fuentes de datos: Proposiciones de Zlotnik-Hill, Preston y Chackiel-Orellana	70
III.	APLICACION DEL METODO AL ESTUDIO DE LA MORTALIDAD FE	75
	MENINA ADULTA A NIVEL REGIONAL	75
	3.1 Análisis de la migración interregional según la condición de orfandad	78

	3.2	Est	imación	de la	mor	talid	ad 1	femen	ina a	ıdulta	par	a
			regione									
		los	resulta	dos y	pos	ibles	so.	lucio	nes .		• • • •	. 81
V. C	ONCLU	ISIUI	VES			• • • •	• • • •			••••		. 93
VI.E	BILIOG	RAF.	IA				• • • •			. 		. 98
А	nexo	I '	lablas a	brévi	adas	de m	orta	alida	d fem	nenina	de	
			Honduras			• • • • •						. 102
Ą	Anexo	11.	Niveles	de mo	ortal	idad	fem	enina	adul	lta de	Hon	-
		,	duras en	las	cuat	ro fa	umil	ias d	e Çoa	ale-De	meny	
			y en e l	siste	ema l	ogito	de	Bras	S	• • • • • •		107
F	Anexo	III	Estimac	ión d	iel t	iempo	00	n ais	tint	os mét	odos	113
Á	Anexo	IA	Migraci	on ir	nterr	egion	al	y est	imac	iones	àе	
			la mort	alida	ad fe	emenin	ia a	dulta	seg	ún reg	ione	:\$
			de salu	ıd de	Hond	luras.						119

INTRODUCCION

El método de orfandad materna ha mostrado ser de mu cha utilidad en la estimación de la mortalidad femenina adulta en países que no tienen estadísticas vitales o en los que ellas son deficientes. En varios países, particularmente, en Africa y América Latina, las estimaciones existentes de mortalidad adulta se basan en esta metodología.

Debido a su gran utilidad se ha ido profundizando en su estudio, analizando algunos supuestos que en realidad no se cumplían.

En un principio el método requería, entre otros, el supuesto de mortalidad constante en un cierto período de tiempo. Si la mortalidad está en descenso, las muertes ocu - rridas algún tiempo atrás, con tasas de mortalidad más altas, producen una sobrestimación de los niveles de mortalidad ac tual. Precisamente, en los países que más requieren del uso de estos métodos indirectos los niveles de mortalidad han ve nido bajando en las últimas décadas.

Actualmente no se requiere de este supuesto porque se han desarrollado técnicas que permiten ubicar en el tiempo cada una de las estimaciones de mortalidad obtenidas con la aplicación del método de orfandad materna.

Su uso cada vez más generalizado, la necesidad de $\underline{t}e$ ner mejores estimaciones y su propio desarrollo plantean a

los demógrafos nuevos problemas en la aplicación del método de orfandad materna, los que deben ser estudiados tratando de darles soluciones satisfactorias.

En varios trabajos recientes se abordan diversos problemas y limitaciones que él presenta y se proponen diversas soluciones. Entre ellos se pueden mencionar los de W. Brass 1/, W. Brass y E.A. Bamgboye 2/, Ian Timaeus 3/, A. Palloni, M. Massagli y J. Marcotte 4/, S. Preston y N. Chen 5/, J. Chackiel y H. Orellana 6/.

^{1/} Brass, William. Advances in methods for estimating fertili ty and mortality from limited and defective data. University of London, Londres, Inglaterra, 1985.

^{2/} Brass, W. y Bamgboye E.A. The Time Location of Reports of Survivorship: Estimates for Maternal and Paternal Or phanhood and the Ever-Widowed. Working Paper No. 81-1, London School of Hygiene and Tropical Medicine, Center for Population Studies, 1981.

Timaeus, Ian. An assessment of Methods for Estimating adult mortality from two sets of data on maternal orphan hood. London School of Hygiene and Tropical Medicine, Center for Population Studies, 1985.

^{4/} Palloni A.; Massagli, M. y Marcotte J. "Estimating Adult Mortality with Maternal Orphanhood Data: Analysis of Sensitivity of the Techniques." En: Population Studies, Number two, July 1984, Londres, Inglaterra.

Preston S. y Chen N. Two-Census Orphanhood Methods for Estimating Adult Mortality, with Applications to Latin America. University of Pennsylvania, United Nations Population Division, Noviembre de 1984.

^{6/} Chackiel, J.; Orellana, H. "Adult female mortality trends from retrospective questions about maternal orphanhood included in censuses and surveys" En: International Population Conference .Florencia, Italia, 1985.

Por otro lado, también el método se ha estado apli - cando en el estudio de la mortalidad femenina adulta para subpoblaciones, por áreas geográficas, en varios países de América Iatina; entre ellos: Paraguay 7/, República Dominicana 8/, Bolivia 9/ y Honduras 10/. Como el método supone población cerrada a la migración o que ésta no sea diferencial se gún la condición de orfandad, es posible que las estimacio nes en este nivel de análisis estén afectadas por la migración interna. Es una posiblidad planteada en los trabajos citados y, por lo tanto, es importante tratar de encontrar soluciones satisfactorias que hagan posible su aplicación a estas subpoblaciones.

^{7/} Arévalo, Jorge. y otros. Encuesta Demográfica Nacional del Paraguay- EDEN - PAR 77- San José, Costa Rica.CELADE, Serie A, N. 1042, 1981.

^{8/} Ceballos Zenón. República Dominicana. La mortalidad según regiones de planificación. Período 1960-1980. Tesis de grado, Celade, Santiago, Chile, 1984.

^{2/} Coa,R. Análisis de la mortalidad infantil- juvenil y adul ta. Construcción de tablas de vida por sexo y áreas rural y urbana. Período 1962-1975. Trabajo de investigación, Celade, Santiago, Chile, 1985.

^{10/} Cuenca, L. Análisis de la mortalidad por sexo y edad, se gún las regiones de salud de Honduras. 1970-1980. Traba-jo de investigación, Celade, Santiago, Chile, 1985.

En este trabajo se pretende, por un lado, analizar la sensibilidad del método de orfandad materna en relación a la escogencia del modelo de mortalidad utilizado y por otro, hacer un estudio relativo a la ubicación en el tiem po de las estimaciones de mortalidad obtenidas con él. Ade más, se tratará de abordar el problema presentado por el efecto de la migración interna en su aplicación a áreas geográficas al interior de un país, en particular, se estudiará a nivel de las regiones de salud de Honduras.

Se utilizará, fundamentalmente, la información recolectada en la Segunda Encuesta Demográfica Nacional de Honduras (EDENH II), ya que ella tiene todos los datos básicos necesarios para realizar este trabajo.

Esta Encuesta fue realizada por el Consejo Superior de Planificación Económica (CONSUPLANE), la Dirección General de Estadística y Censos (DGEC) y el Centro Latinoaméricano de Demografía (CELADE), entre el 10. de Julio de 1983 y el 20 de Enero de 1984.

Fue una encuesta retrospectiva, de una sola visita. Se encuestaron 11103 hogares con 62487 personas, inclu-yéndose en el cuestionario las preguntas necesarias para la aplicación del método de orfandad materna, tanto para la estimación del nivel de mortalidad como para la ubicación en el tiempo de ellas; incluso se ha obtenido el año de fa

llecimiento de las madres de los encuestados. Se considera que los datos obtenidos en esta Segunda Encuesta Demográfica Nacional son de buena calidad 11/.

Además se usan datos sobre orfandad materna del Cen so Nacional de Población de Honduras realizado el 6 de Marzo de 1974 y de la Primera Encuesta Demográfica Nacional de Honduras (EDENH I), realizada desde el 7 de Diciembre de 1970 hasta el 31 de Octubre de 1972. En particular, se usa rá la información de la EDENH I retrospectiva que corresponde al período que va desde el 3 de Julio al 31 de Octubre de 1972.

El estudio de la sensibilidad del método en rela - ción al modelo de mortalidad se hará considerando las ta - blas de vida modelo de Coale y Demeny 12/ y el sistema logito de W. Brass 13/. Se usará el método de orfandad pro - puesto originalmente por Brass 14/ con el objeto de considerar un espectro más amplio en las edades de los informantes y se aplicará a los datos de la EDENH II a nivel nacional.

^{11/} DGEC, CONSUPLANE y CELADE, EDENH II 1983, Informe General CELADE, Vol. 2, Serie A. 1047/II, San José, Costa Rica, Septiembre de 1985.

^{12/} Coale, A. Demeny, P. Regional model life tables and stable populations. New Jersey, U.S.A. Princeton University Press, 1966.

^{13/} Brass, W. Métodos para estimar la fecundidad y la morta lidad en poblaciones con datos limitados. Stgo. Chile. CELADE, 1974

^{1&}lt;u>4</u>/ Ibid.

Se calculará la fecha correspondiente a las estimaciones de mortalidad con los métodos propuestos por W.Brass y E.A. Bamgboye 15/, la simplificación hecha por W. Brass 16/, el propuesto por los profesores Juan Chackiel y Hernán Orellana 17/ y además, se calculará la mediana de los años de fallecimiento de las madres, por grupos de edad de los encuestados. También se realizarán estimaciones usando dos fuentes de datos, con los métodos propuestos por Preston y por Zlotnik-Hill, tal como los presenta I. Timaeus 18/.

Finalmente, se hará un análisis de la migración in terna (a nivel regional) según la condición de orfandad y se estimará la mortalidad femenina adulta para las regiones de Salud de Honduras, según:

- a) El lugar de residencia actual del encuestado,
- b) El lugar de nacimiento del encuestado y
- c) El lugar de residencia hace 5 años.

^{15/} Brass W. y Bamgboye E.A. Op. cit.

^{16/} Brass W. Advances in methods op cit.

^{17/} Chackiel, J. Orellana, H. Op. cit.

^{18/} Timaeus, I. Op. cit.

1<u>9</u>/

1.1 El método original propuesto por Brass

Este es un método indirecto que permite estimar la mortalidad femenina adulta a partir de las proporciones de no-huérfanos. La inclusión de una pregunta muy simple, en cen sos o encuestas, acerca de si la madre está viva o muerta, ha ce posible obtener las proporciones de personas encuestadas que tienen su madre viva, clasificadas por grupos quinquenales de edad. Estas proporciones son transformadas en probabilidades condicionales de sobrevivencia de una tabla de vida, obteniendo así una medida convencional de mortalidad femenina adulta.

En efecto, si una mujer tiene un hijo a los 28 años de edad, su exposición al riesgo de morir y, por lo tanto, la exposición del niño al riesgo de orfandad materna, aumenta con la edad del niño. Si el niño tiene, por ejemplo, 15 años la probabilidad de que su madre esté viva es la / 128. Debe considerarse entonces la probabilidad de que un hijo haya nacido hace 15 años de una madre de 28 años de edad, la que depende de la distribución por edad de las mujeres en edades fértiles 15 años atrás y del patrón por edad de la fecundidad(esto es, de las tasas de fecundidad por edad). Entonces, para una distribución de las mujeres según la edad y una estructura

¹⁹/ Brass, W. Métodos para estimar op. cit.

de la fecundidad por edad se puede obtener la proporción de encuestados de una cierta edad que tienen su madre viva por medio de la suma de los productos entre la probabilidad de sobrevivencia y la probabilidad de haber nacido de una madre de una cierta edad. Por lo tanto, la proporción estimada de no-huérfanos puede compararse con las probabilidades condicionales de sobrevivencia de una tabla de vida. En resumen , lo que hizo W. Brass fue calcular factores de conversión para transformar las proporciones de no-huérfanos de edad a en probabilidades condicionales de sobrevivencia

 $^{1}B + a$

lB, donde B es una edad cercana a la edad media de las madres al tener sus hijos (M). En el cálculo de estos factores de conversión utilizó la Tabla General Standard de Mortalidad de Brass, una tasa de crecimiento natural de la población del dos por ciento anual y el polinomio de Brass para la fecundidad por edad. Para poder ajustar las condiciones del modelo a cada aplicación particular se usaron varias ubicaciones de la fecundidad. Los factores de conversión los obtuvo a partir de la edad de las madres al tener sus hijos, ya que M se considera como un índice combinado de la distribución por edades de la población y de su patrón de fecundidad.

A continuación se presentan con más detalle los aspec

tos más importantes del desarrollo del método de orfandad materna.

Se considera un grupo de encuestados que tiene a años de edad al momento de la encuesta. Estos son los sobrevivien tes de los nacimientos ocurridos hace a años.

Si además se representa con A(t) el número de mujeres en edad fértil de taños de edad hace a años y con f(t) a la probabilidad de tener un hijo a la edad t, entonces:

 $C(a) = \int_{p}^{q} A(t) f(t) dt \qquad \text{es el número de hijos que}$ nacieron hace a años, en que

- p es la edad de inicio del período fértil y
- q es la edad final del período fértil.

Cuando nacieron los hijos sus madres estaban vivas y que estén vivas o no a años después depende de la experiencia de mortalidad de ellas entre las edades ty t+a.

Si l(t) es la probabilidad de sobrevivir desde el na cimiento hasta la edad exacta t, en la tabla de vida femenina, se tiene que:

$$\frac{1 (t+a)}{1(t)}$$
 es la probabilidad de que una madre de edad t sobreviva a la edad t+a.

Luego:
$$\int_{p}^{q} \frac{A(t)f(t)l(t+a)}{l(t)} dt$$
 es el número de madres

que sobreviven a años, y, por lo tanto, la proporción de madres sobrevivientes de los hijos nacidos hace a años es:

$$\int_{q}^{q} A(t)f(t) \frac{1(a+t)}{1(t)} dt$$

$$\overline{||}(a) = \frac{p}{q}$$

$$\int_{q}^{q} A(t)f(t)dt$$

$$p$$
y es igual a la pro

porción de no-huérfanos de madre.

Para su uso práctico Brass considera

A(t)=k e^{-rt} l(t), que es la forma de una población estable, con k= constante y r= tasa de crecimiento natural.

Entonces:

$$\frac{\int_{q}^{q} e^{-rt} f(t)l(t+a)dt}{\int_{p}^{q} e^{-rt} f(t)l(t)dt}$$

La evaluación de estas integrales se hace usando m $\underline{\acute{e}}$ todos numéricos.

Si y es el extremo inferior de un grupo de edades (de las mujeres en edad fértil hace a años) y s es la edad de inicio de la edad fértil, se puede obtener II (a) en forma aproximada como:

$$\frac{\sum_{y=s}^{y=s} e^{-r(y+2.5)} 1(y+2.5+a) \int_{y}^{y+5} f(t) dt}{\sum_{y=s}^{y=s} e^{-r(y+2.5)} 1(y+2.5) \int_{y}^{y+5} f(t) dt}$$

La $\int f(t)dt$ es la tasa de fecundidad del grupo quiny quenal (y, y+5), en que $f(t) = c(t-s) (s+33-t)^2$ y $s \le t \le s+33$, es el polinomio de fecundidad de Brass.

Se calcularon valores aproximados de TT (a), para a= 2.5, 5.0, 7.5 y así sucesivamente a intervalos de 2.5, combinando con valores de s entre 10 y 25 años a intervalos también de 2.5 años, utilizando, como ya se ha dicho, una tasa de crecimiento natural de la población del 2% anual, que W. Brass considera adecuada por las características demográficas de las poblaciones a las que se aplica este tipo de métodos.

Las probabilidades de sobrevivencia las obtiene de la Tabla Standard General de Mortalidad de Brass.

Se obtuvieron así los valores aproximados de TI (a) para valores puntuales de a, para los hijos informantes de edades exactas 2.5, 5.0, 7.5, etc.

Para efectos prácticos lo que interesa es tener la proporción de no-huérfanos (o de madres sobrevivientes) por grupos quinquenales de edad de los encuestados. Por eso se ha ce un proceso de estimaciones adicionales que permite obtener un valor para un grupo quinquenal a partir de esos valores a edades exactas.

Esto se hace utilizando M, pues para cada valor de s (en el polimonio de fecundidad de Brass), existe un valor correspondiente de M y M puede considerarse como una estimación de la diferencia promedio entre la edad de la madre y las de sus hijos y, por lo tanto, toma en cuenta los efectos de la mortalidad y del movimiento de la población en el número de mujeres en cada grupo de edades.

La proporción de encuestados de un grupo quinquenal con edad central a que tiene su madre viva, se calculó para diversas ubicaciones de la ley de fecundidad por edades f(t).

Cada valor de TI (a) se asocia con alguna probabili

dad de sobrevivencia de la Tabla Standard de Mortalidad de Brass, es decir, existe una edad B tal que:

$$\frac{1}{11} (a) = \frac{1}{1_B} .$$

B depende de la ubicación de la distribución de fecun didad y del valor de a y es un valor del orden de magnitud de la edad media de las madres al nacimiento de sus hijos.

Para trabajar con B un múltiplo de 5 se utiliza un promedio ponderado de las proporciones de no-huérfanos de grupos de edades adyacentes. Así, obtiene que para el rango de ubicaciones de la fecundidad que ocurren comúnmente, puede fijar B en 25 años.

Se obtiene:
$$\frac{1(25 + N)}{1(25)} = W(N) TT + \begin{bmatrix} 1 - W(N) \end{bmatrix} TT \\ 5 N - 5 \end{bmatrix}$$

en que: N es la edad que divide a los grupos adyacentes,

TT es la proporción de no-huérfanos del grupo de 5 N-5 encuestados de edades entre N-5 y N,

TT some some servición de no-huérfanos del grupo de encuestados de edades entre N y N +5 y

W(N) es un factor de ponderación que depende de N y de la ubicación del período reproductivo representado por M.

Para calcular los factores W(N) se utilizan los valores de 1(25 + N) / 1(25) de la Tabla Standard de Mortal<u>i</u> dad y los valores de \overline{II} (a) ya obtenidos.

Con los valores de W(N), que se presentan en el cua dro 1, y las proporciones de encuestados que tienen la madre viva se pueden estimar las probabilidades condicionales de sobrevivencia 1(25 + N)/1(25) de la tabla de vida; general mente, en la población en estudio el valor de M no es entero, por lo que será necesario hacer una interpolación lineal para obtener los valores de W(N).

CUADRO 1.

Factores de ponderación W(N) para convertir las proporciones de madres vivas en probabilidades de supervivencia a partir de los 25 años de edad .

				M					
N	22	23	24	25	26	27	28	29	30
(Edad central)									
10	0.420	0.470	0.517	0.557	0.596	0.634	0.674	0.717	0.758
15	0.418	0.489	0.556	0.618	0.678	0.738	0.800	0.863	0.924
20	0.404	0.500	0.590	0.673	0.756	0.838	0.921	1.004	1.085
25	0.366	0.485	0.598	0.704	0.809	0.913	1.016	1.118	1.218
30	0.303	0.445	0.580	0.708	0.834	0.957	1.080	1.203	1.323
35	0.241	0.401	0.554	0.701	0.844	0.986	1.128	1.270	1.412
40	0.125	0.299	0.467	0.630	0.791	0.950	1.111	1.274	1.442
45	0.007	0.186	0.361	0.535	0.708	0.884	1.063	1.250	1.447
50	-0.190	-0.017	0.158	0.334	0.514	0.699	0.890	0.095	1.318
55	-0.368	-0.220	-0.059	0.101	0.270	0.456	0.645	0.856	1.083
60	-0.466	-0.352	-0.217	-0.084	0.053	0.220	0.378	0.579	0.800

La edad media de las madres M se puede obtener con los nacimientos del último año anterior a la encuesta.

$$\frac{7}{\sum_{i=1}^{7} \overline{X}_{i}} B_{i}$$

$$M = \frac{7}{\sum_{i=1}^{7} B_{i}} B_{i}$$
en que:

 \overline{X}_{i} = punto medio del intervalo de edades i.

 B_{i} = nacimientos de las mujeres del grupo de edades i,

El método está basado en varios supuestos, además de los usuales sobre la fecundidad constante, mortalidad constante y población cerrada. Los datos son, en realidad, proporciones de madres sobrevivientes de hijos que también son sobrevivientes y que son estrevistados. Luego, para generalizar a la población femenina adulta total las estimaciones de mortalidad obtenida, deben hacerse varios supuestos, a saber: (1) que no hay relación entre la sobrevivencia de la madre y la del hijo; si los hijos de madres que murieron tuvieron una mortalidad mayor, el número de entrevistados con madre muerta sería menor; (2) que la experiencia de mortalidad de madres es representativa de la experiencia de mortalidad de toda la población femenina adulta; (3) que el riesgo de mortalidad de la madre no está relacionado con el número de hijos que ella tie ne, esto porque el número de informantes por mujer depende del

número de hijos sobrevivientes.

Por otro lado, se supone que la población en estudio tiene un comportameinto que debe estar próximo a los modelos de fecundidad y mortalidad que se han utilizado para desarrollar el método.

Hay que agregar finalmente que se supone que la calidad de la información básica es confiable, o sea, que las personas entrevistadas declaran correctamente su edad y su condición de orfandad.

K.Hill 20/ afirma que las estimaciones de mortalidad con el método de orfandad materna tienden a subestimar exage radamente los niveles de mortalidad para aquellas estimaciones que provienen de informantes jóvenes (5-9 y 10-14), que las estimaciones más confiables provienen de los entrevista dos de edades entre los 25 y 45 años y que para edades mayo res se produce nuevamente una subestimación de la mortalidad.

Dice que la baja incidencia de la orfandad entre los jóvenes es atribuída a los efectos de la adopción de niños huérfanos por parte de sus parientes, los que son declarados como sus verdaderos padres; agrega que es probable que al menos en parte este fenómeno sea causado por el uso en el aná

^{20/} Hill, K. " El uso de información sobre orfandad para es timar la supervivencia en edades adultas". En : Notas de Población, N. 15, CELADE, San José, Costa Rica, Diciem bre de 1977.

lisis de una tabla standard de vida que exagera la mortalidad de adultos jóvenes y que el uso de una standard diferente podría reducir el aparente efecto de la adopción. La exageración en la proporción de no-huérfanos después de los 50 años podría deberse a exageraciones en la declaración de la edad y a que en casos de duda se declare viva a la madre, y agrega que "En edades avanzadas la metodología y los modelos utilizados en su desarrollo cobran importancia y, por lo tanto, el procedimiento se hace inapropiado".

Considera que la información proporcionada por los entrevistados entre los 20 y los 45 años es la más confiable.

1.2 La variante de K. Hill y J. Trussell

Más recientemente (1977) Hill y Trussell proponen una variante más simple que la original de Brass.

Ellos hicieron una simulación para 900 casos con datos generados con patrones de fecundidad obtenidos con el Modelo de Coale-Trussell 22/ y patrones de mortalidad genera dos mediante el sistema logito 23/ con las cuatro familias de mortalidad de Coale y Demeny 24/ como standard.

Hicieron un análisis de regresión entre 1(25 + N)/1(25) como variable dependiente y las proporciones de no-huérfanos por grupos quinquenales de edades y la edad media de las madres al nacimiento de sus hijos como variables independientes.

^{21/} Hill, K. Trussell, J. "Further developments in indirect mortality estimation". En: Population Studies, Vol. XXXI, N. 2, Julio de 1977.

^{22/} Coale, A. Trussell, J. " Model fertility schedules: variations in the age structure of childbearing in human population". En: Population Index, Vol. 40, N.2, Abril de 1974.

^{23/} Brass, W. Métodos para estimar.... op. cit.

^{24/} Coale, A.; Demeny, P. op. cit.

Utilizaron la regresión siguiente:

$$1(25 + N)/1(25) = a_N + b_N + c_N S(N-5,5)$$
 en que:

1(25 + N)/1(25) es la probabilidad de sobrevivir desde los 25 hasta los(25 + N)años de edad.

M es la edad media de las madres al tener sus hijos.

S(N-5,5) es la proporción de no-huérfanos del grupo quinquenal de edades entre N-5 y N.

 a_N , b_N , c_N son los coeficientes de la regresión que se presentan en el cuadro 2.

CUADRO 2

Coeficiente para estimar las probabilidades de supervivencia femenina desde los 25 años de edad a partir de las proporciones de informantes con madre viva .

		Coeficientes	
Edad N	$^{\mathrm{a}}$ N	p N	c N
20	-0.1798	0.00476	1.0505
25	-0.2267	0.00737	1.0291
30	-0.3108	0.01072	1.0287
35	-0.4259	0.01473	1.0473
40	-0.5566	0.01903	1.0818
45	-0.6676	0.02256	1.1228
50	-0.6981	0.02344	1.1454

Fuente: Naciones Unidas. Manual X. Técnicas indirectas de estimación demográfica. Nueva York, 1986.

1.3 Localización en el tiempo de las estimaciones de mortalidad femenina adulta.

Las dos variantes del método de orfandad materna estudiadas hasta aquí tienen el supuesto de mortalidad constante el que, en la réalidad, no se cumple. Es evidente, en tonces, de que se está estimando mortalidad del pasado, pues to que las muertes declaradas debieron ocurrir durante un período de tiempo que termina en el momento de la recolección de los datos.

Cada una de las estimaciones de las probabilidades condicionales de sobrevivencia 1(25 + N)/1(25) tiene una referencia temporal distinta en el pasado. Como la exposición al riesgo de morir de las madres aumenta con la edad de los hijos informantes, el período al que corresponde cada una de las 1(25 + N)/1(25) es distinto y más lejano cuanto más edad tienen los encuestados (o sea cuanto más grande es N).

La determinación del momento al que corresponden las estimaciones de mortalidad obtenidas con métodos indirectos fue abordada, por primera vez en 1977, por G.Feeney 25/, quien lo hizo para el caso de las estimaciones $\mathbf{x}^{\mathbf{q}_0}$ de mortalidad infantil y juvenil, obtenidas a través de la proportación de hijos fallecidos según la edad de las madres. Esto

^{25/} Feeney, G. Estimación de las tendencias de la mortalidad a partir de información de hijos sobrevivientes. CELADE Serie D N. 88, Santiago, Chile, 1977.

ha significado un gran avance en el desarrollo de estas técnicas indirectas para estimar la mortalidad.

Tomando las ideas básicas de Feeney, recientemente se han elaborado métodos para estimar el tiempo T, anterior a la encuesta, al que corresponde cada una de las estimacio nes obtenidas a partir de la información sobre orfandad mater na.

En esta sección se tratan los métodos propuestos por W.Brass y E.A. Bamgboye 26/, una simplificación de éste propuesta por W. Brass 27/ y la proposición de los profesores J. Chackiel y H. Orellana 28/.

^{26/} Brass, W.; Bamgboye, E.A. op. cit.

^{27/} Brass, W. Advances in methods op. cit.

^{28/} Chackiel, J.; Orellana, H. op. cit.

1.3.a. Método de W. Brass y E.A. Bamgboye.

No se hace el tratamiento matemático detallado, pues se encuentra en el trabajo de ellos ya citado. Solamente se des tacan los supuestos más significativos y los respectivos resultados. Su desarrollo tiene una parte que es común a todos estos métodos indirectos, para luego particularizar al caso del método de orfandad materna.

Se parte de la proporción de sobrevivientes entre las edades a hasta (a+u), la que se expresa en la siguiente fórmula.

$$\Pi_{c} = \frac{\sum_{a} u^{N_{a}} u^{p_{a}^{c}}}{\sum_{a} u^{N_{a}}} = \sum_{a} u^{W_{a}} u^{p_{a}^{c}}$$

en que:

 u^{N}

son las personas expuestas al riesgo de morir entre las edades a hasta a+u,

$$\sum_{a} \sum_{u} N_{a} = N$$

y N

es el total de personas expuestas al riesgo

 u^pa

es la proporción de sobrevivientes desde a hasta a+u para la cohorte de edad a+u al momento de la encuesta,

$$u^{\mathbf{W}} \mathbf{a} = \frac{\mathbf{u}^{\mathbf{N}} \mathbf{a}}{\mathbf{N}}$$

es la proporción de personas expuestas al riesgo de morir desde a hasta a+u.

ķ

Luego: $\sum_{a} \sum_{u} v_{a} v_{a} v_{a}^{P_{a}^{C}} = N_{S}$ es el número de personas sobrevivientes.

y
$$TT_c = \frac{N_S}{N}$$
 es la proporción de personas sobrevivientes .

El objetivo es determinar T tal que:

$$\Pi_c = \Pi(T) = \sum_a \sum_u u^w a u^p a(T)$$
 donde $u^p a(T)$

es la proporción de sobrevivientes desde a hasta (a+u) en el período en que la tasa de mortalidad es la correspondiente al tiempo T. T se expresa en años anteriores a la encuesta (o censo).

Bajo el supuesto de que las tendencias de mortal \underline{i} dad pueden ser descritas por el sistema logito:

$$Y(x,t) = k(t-to) + Y(x,t_0)$$
, en que: $Y(x,t) = \frac{1}{2} \ln \left[\frac{1-l(x,t)}{l(x,t)} \right]$,

l(x,t) es la proporción de sobrevivientes en la tabla de vida a la edad x en el momento t,

 t_o es un origen arbitrario y

k es la tasa constante de cambio de la mortalidad en la escala logito.

Debe notarse que se está suponiendo que el parámetro

 \propto (t) = k (t-to) del sistema logito tiene un comportamiento lineal como función del tiempo.

A través de un proceso matemático se concluye que $\overline{\Pi}_{C}$ es aproximadamente igual a $\overline{\Pi}$ (T) cuando

$$T = \frac{\sum_{a} \sum_{u} u^{w}_{a} u^{p}_{a} (u l(a) - u^{L}_{a})}{\sum_{u} u^{w}_{a} u^{p}_{a} (l(a) - l(a + u))}, \text{ en que}$$

las medidas en la tabla de vida son las del período correspondiente al tiempo T.

Se ve, en la fórmula, que T no dependedel valor de k que es el que determina la tasa de cambio de la mortalidad, pero sí depende del patrón de mortalidad.

Ahora, se desarrolla una forma más sencilla y práctica para calcular T en las estimaciones hechas con el método de orfan dad materna.

Se considera la proporción de madres sobrevivientes al momen to de la encuesta según la edad de los encuestados. Si la edad de los encuestados se fija entonces u no varía y es posible tomar u=N. Entonces las sumas en el cálculo de T depen den solamente de a, esto es la duración de la exposición al riego es la misma para todas las madres.

Luego se tiene que:

$$T = \frac{\sum_{a}^{N} N^{a} N^{p} A^{p} \left[N^{1}(a) - N^{L} A \right]}{\sum_{a}^{N} N^{a} N^{p} A^{m} \left[1(a) - 1(a+N) \right]}$$

Una forma de tener una estimación para T es suponer que l(x) es lineal en un rango amplio, lo que corresponde a una muy alta mortalidad; en este caso se tiene:

$$N_a = \frac{1}{2} N \left[1(a) + 1(a+N) \right]$$
, lo cual implica que

$$N l(a) - N_a = \frac{1}{2} N [1(a)-l(a+N)]$$
.

Sustituyendo en la fórmula anterior se obtiene $\frac{1}{2}$ N, o sea, que T es igual a la mitad del tiempo promedio de exposición al riesgo. Esto es, bajo los supuestos de que la tendencia de la mortalidad es lineal y de que las muertes se distribuyen igualmente según la edad.

En poblaciones con una mortalidad menos extrema ocurren más muertes en las últimas edades, acumulándose hacia el presente y reduciéndose así el valor de T correspondiente.

Por lo anterior, se puede multiplicar $\frac{1}{2}N$ por un valor menor que 1 y escribir $T=\frac{1}{2}N\left[1-C_N\right]$ en que C_N hay que determinarlo de manera que sea satisfactorio para efec

tos prácticos; se espera que sea relativamente pequeño.

De acuerdo a lo observado en las tablas de vida mode lo, salvo para las edades más viejas, les parece adecuado suponer que las muertes crecen exponencialmente con la edad $(1'(z) = C e^{gz}). \mbox{ La característica de un crecimiento exponencial es que la forma es siempre la misma, cualquiera sea el punto de inicio lo que trae como consecuencia que T es independiente de a y por lo tanto de <math>_{N}^{W}a$.

Se concluye que: $C_N = \frac{1}{6}gN$ y por tanto $T = \frac{1}{2}N\left[1 - \frac{1}{6}gN\right]$, donde g es la tasa constante de crecimiento relativo de las muer tes por edad en el modelo exponencial.

Falta obtener g a partir de los valores observados.

Lo hacen usando la relación logito ya asumida en la obtención de T y encuentran:

$$C_{N} = \frac{1}{3} \left[\ln p - \ln p_s \right] + \frac{1}{6} g_s N$$
, con:

- s simboliza la tabla de vida standard utilizada,
- p es la probabilidad de sobrevivir N años en la experiencia de mortalidad observada, a partir de la edad a ,
- ${\bf p}_{\bf S}$ es laprobabilidad de sobrevivir N años en la experiencia de mortalidad de la tabla de vida standard, a partir de la edad a.

Si se hace p=S = proporción de madres sobrevivientes de los informantes de edad N se reduce a:

$$C_{N} = \frac{1}{3} \ln S - \frac{1}{3} \ln S_{S} + \frac{1}{6} g_{S} N$$

Haciendo: $f_s = -\frac{1}{3} \ln S_s + \frac{1}{6} g_s^N$ se puede escribir

 $c_{N} = \frac{1}{3} \ln S + f_{s} \quad \text{con } f_{s} \quad \text{un valor calculado de}$ un patrón de mortalidad standard.

Uno de los hechos claves en esta deduccción ha sido la eliminación de $_{\rm N}{\rm W}_{\rm a}$ en la expresión para calcular T. Sin embargo, en el cálculo de $\rm f_s$ (o sea de S $_{\rm S}$ y $\rm g_{\rm S}$) es incorporado.

Se toma como edad inicial promedio de exposición al riesgo a M, que es la edad media de las madres al tener sus hijos. Este supuesto se considera bueno porque se ha visto que hay poca sensibilidad de la forma del crecimiento de la mortalidad respecto a los cambios de la edad inicial a y los efectos de las variaciones en la distribución de los nacimientos alrede dor del promedio son pequeños.

Incorporando M, la fórmula queda:

$$_{N}^{C}_{M} = \frac{1}{3} \ln _{N}^{S}_{M} + f_{S} (N, M).$$

 f_s (N, M) ha sido calculado de una tabla de vida standard, en el sistema logito con $\beta = 1$ y d = -0.4. Para este propósito es equivalente usar la Standard General o la Africana ya que am b's tienen las mismas probabilidades de sobreviviencia l (x) después de la niñez. Se toma d = -0.4 pues la standard con

En la determinación de f_s (N, M) lo dominante es el valor de M + N porque la tasa de cambio de las muertes de la tabla de vida crece con la edad y la tasa media de cambio de M a M+N depende más de M+N que de M o de N separadamente. Se tiene:

 f_s (N,M) = f (N+M) + 0.0037(27-M) habiendo introducido 0.0037 (27-M) como un pequeño factor de ajuste.

C U A D R O 3

VALORES DE LA FUNCION f (u) PARA CALCULAR
T EN EL METODO DE BRASS Y BAMGBOYE.

u	f(u)	u	f(u)	u	f(u)	u	f(u)	u	f(u)	
26	.090	36	.092	46	.149	56	.274	66	.452	
27	.090	37	.093	47	.160	57	.289	67	.473	
28	.090	38	.095	48	.171	58	.305	68	.495	
29	.090	39	.099	49	.182	59	.321	69	.518	
30	.090	40	.104	50	.193	60	.338	70	.542	
31	.090	41	.109	51	.205	61	.356	71	.568	
32	.090	42	.115	52	.218	62	.374	72	.595	
33	.090	43	.122	53	.231	63	.392	73	.622	
34	.090	44	.130	54	.245	64	.411	74	.650	
35	.091	45	.139	55	.259	65	.431	75	.678	
 						_		•		

Luego:
$$T = \frac{1}{2} N \begin{bmatrix} 1 - N^{C}M \end{bmatrix}$$
 con

$$_{N}^{C}_{M} = \frac{1}{3} \ln _{N}^{S}_{M} + f (N+M) + 0.0037 (27-M), \text{ en que los}$$

valores obtenidos para f(u) se presentan en el cuadro 3.

En la práctica la sobrevivencia de las madres se mide para grupos quinquenales de edad de los informantes y no en un punto N. Pero el cambio en T con la edad de los informantes en intervalos cortos es aproximadamente lineal y los efectos de las variaciones dentro de grupos de cinco años es pequeño, excepto en las últimas edades. El uso del punto medio del intervalo de 5 años no altera significativamente la precisión con que se calcula T.

Si los informantes están agrupados por grupos quinquenales de edad la fórmula queda, finalmente, para la variante de Hill-Trussell:

$$T_{(N)} = \frac{1}{2} (N-2.5) \left[1 - C_N\right]$$
 con

$$C_{N} = \frac{1}{3} \ln \left[S (N-5,5) \right] + f (N+M-2.5) + 0.0037(27-M)$$

en que: N es el extremo superior del grupo de edad de los informantes,

S(N-5.5) es la proporción de informantes del grupo (N-5, N) con madre viva.

y para el método original de Brass:

$$T(N) = \frac{1}{2} N \left[1-C_{N}\right] con$$

$$C_{N} = \frac{1}{3} ln \left[S(N-5, 10)\right] + f(N+M) + 0.0037(27-M)$$

en que:

N es la edad central entre los dos grupos quinquenales de edad adyacentes.

S(N-5, 10) es la proporción de entrevistados del grupo de edades entre N-5 y N+5, con madre viva.

1.3b La nueva proposición de W. Brass.

W.Brass propone una simplificación.Considera los mismos supuestos que en el desarrollo de Brass-Bamgboye hasta lo grar:

$$T = \frac{1}{2} N \left[1 - C_{N} \right] \quad \text{con} \quad C_{N} = \frac{1}{3} \left[\ln p - \ln p_{s} \right] + \frac{1}{6} g_{s} N$$

o sea,

$$T = \frac{1}{2} N \left[1 - \frac{1}{6} g_{s} N - \frac{1}{3} lnp - \frac{1}{3} lnp_{s} \right]$$

Toma $l_s(x)$ como una tabla de vida de alta mortalidad que se aproxima a un comportamiento lineal en las edades adultas.

Entonces g_s tiende a cero. Además sustituye p por $_NS_M$.

Si
$$l_{s}(x) = \frac{1}{2} \left[1 - \frac{x}{80} \right]$$
 para $x \in [20, 80]$ (o sea

considera una tabla de vida en que w= 80)

se obtiene:
$$p_s = [80-(M+N)] / (80-M)$$

$$T = \frac{1}{2} N \left\{ 1 - \frac{1}{3} \ln \left[\frac{N^{S} M^{(80-M)}}{80 - (M+N)} \right] \right\}$$

Si se aplica a grupos quinquenales se tiene para la

CUADRO 4.

Orfandad Materna: Tiempo (T) estimado con la fórmula general (D), con las fórmulas de Brass - Bamgboye (F) y de Brass (f), para varios valores de α y M = 26.75.

Edad de		-1.2			-0.4		0.4		
los Encuestado	s D	f	F_	D	f	F	D	f	F
5-9	3.50	3.51	3.42	3.53	3.61	3.46	3.60	3.70	3.55
10-14	5.68	5.73	5.66	5.79	5.84	5.77	6.03	6.10	6.03
15-19	7.64	7.67	7.67	7.91	7.92	7.92	8.44	8.45	8.44
20-24	9.27	9.35	9.32	9.81	9.82	9.79	10.76	10.75	10.71
25-29	10.47	10.72	10.62	11.44	11.52	11.42	12.97	12.99	12.89
30-34	11.23	11.68	11.49	12.82	13.00	12.80	15.08	15.20	15.00
35-39	11.60	12.12	11.92	14.00	14.20	13.99	17.14	17.33	17.13
40-44	11.73	11.74	11.92	15.05	14.89	15.07	19.18	19.18	19.36
45-49	11.79	9.49	11.49	16.03	14.06	16.06	21.28	19.73	21.73

variante de Hill-Trussell que:

$$T_{(N)} = \frac{1}{2} (N-2.5) \left\{ 1 - \frac{1}{3} \ln \left[\frac{S(N-5,5) (80-M)}{80-(M+N-2.5)} \right] \right\}, \text{ en que}$$

N es el extremo superior del grupo de informantes de edades (N-5,N).

El cuadro 4 muestra los valores de T obtenidos directamente con la fórmula general de la página 25 (D), con las fórmulas de Brass-Bamgboye (F) y de Brass (f).

Al comparar (D) con (F) se observa que, en general, las diferencias crecen con la exposición al riesgo y son mayores cuando la mortalidad se aleja de su nivel standard. Algo similar se observa con (D) y (f), aunque en este caso hay más irregularidades cuando aumenta la exposición al riesgo.

En el método de Brass-Bamgboye, si se observa el cua dro 4, no puede decirse nada definitivo acerca del sentido en que se afectaría T cuando la mortalidad es mayor o es menor que la correspondiente a la Standard de Brass utilizada para estimar f(u). Salvo para la estimación que procede del grupo 45-49, en que se ve que si la mortalidad es menor (= - 1.2) el valor de T es menor (respecto a D), mientras que si la mortalidad es mayor (= 0.4), entonces el valor de T estimado resulta mayor (respecto a D). Esto es, en el primer caso acerca el momento al que corresponde la estimación de mortalidad proceden te de ese grupo de entrevistados.

Brass afirma que los resultados son buenos hasta para (N+M) próximo a los 75 anos de edad con el supuesto de que l'(x) tiene un comportamiento exponencial, pero no es así para edades posteriores.

Posiblemente este supuesto sea una de las razones por las que a medida que aumenta la exposición al riesgo, o sea, que aumenta la edad de los informantes, el tiempo estimado se aleja menos, llegando incluso en algunos casos, a tener un valor de

T para el grupo 45-49 menor que para el grupo 40-44 y para el grupo 35-39. Incluso, en el caso del método de Brass se tiene el un valor de T para grupo 45-49 menor que el de los grupos 40-44, 35-39, 30-34 y 25-29.

Respecto al supuesto de linealidad del cambio en la mortalidad con el tiempo en la escala logito, dice W.Brass, que es dudoso para las exposiciones al riesgo más grandes, sin especificar cual sería el efecto en la estimación de T.

Se puede concluír que la fórmula simplificada de Brass presenta irregularidades que no aparecen tan notorias con el método de Brass-Bamgboye cuando aumenta la exposición al riego; las irregularidades en el método de Brass se acentúan para niveles de mortalidad más bajos.

1.3 c. <u>La proposición de los profesores J.Chackiel</u> y H. Orellana.

Este procedimiento puede usarse si se dispone de la información acerca del año de fallecimiento de las madres.

Para cada grupo quinquenal de edad de los informantes se toma como fecha correspondiente a cada estimación de l(25 + N) / 1(25) el promedio aritmético de las fechas de fallecimiento de las madres.

En este método para determinar el tiempo el supue \underline{s} to clave es que el momento al cual corresponde cada estimación de l(25 + N) / l(25) está dado por la fecha promedio de las fechas de fallecimiento de las madres.

II. ESTIMACION DE LA MORTALIDAD FEMENINA ADULTA EN EL TIEMPO A PARTIR DEL METODO DE ORFAN -DAD MATERNA.

En este capítulo se abordarán fundamentalmente dos de los problemas que plantea la aplicación del método de orfan dad materna. El primero se refiere a la elección del modelo de mortalidad que se usará para determinar los niveles de mortalidad femenina adulta que corresponden a cada estimación de l(25+ N)/1(25) y cómo ésta afecta las estimaciones de mortalidad. El otro es cómo determinar el momento o período de tiempo al cual corresponden las estimaciones de mortalidad obtenidas.

Como ya se ha dicho, este estudio se hará con la información básica a la EDENH II, realizada entre el 10. de Julio de 1983 y el 20 de Enero de 1984. Esta encuesta recogió todos los datos necesarios para estimar la mortalidad con el método de orfandad materna y hacer las estimaciones correspondientes del momento al que ellas corresponden, incluyendo el año de fallecimiento de las madres de los encuestados.

Se utilizará la versión original de Brass con el objeto de considerar un espectro más amplio en las edades de los hijos informantes. Por otro lado, cuando fueron aplicadas las variantes de W. Brass y de Hill-Trussella cerca de 1000 casos distintos simulados usando diferentes patrones de mortalidad y fecundidad, se encontró que el método propuesto por Brass pro-

ducía iguales o mejores resultados que el método basado en las regresiones de Hill-Trussell cuando N no superaba los 30 años, mientras que sucedía lo contrario para valores superiores a 30. 29/

2.1 Sensibilidad del método de orfandad respecto al modelo de mortalidad utilizado.

En el cuadro 5 se presenta la información básica para el total del país, obtenida a partir de la EDENH II.

Estos datos permiten calcular la proporción de nohuérfanos de madre por grupos quinquenales de edad, así como la edad media de las madres al tener sus hijos, que son los parámetros de entrada para la aplicación del método.

El número de personas sin declaración respecto a su condición de orfandad materna no alcanza al U.2%, siendo los más altos los correspondientes a los grupos 45-49 (0.61%) y 50-54 (0.53 %).

En el cuadro 6 se presentan las probabilidades de sobrevivencia, 1(25 + N)/1(25), los correspondientes niveles de mortalidad en las distintas familias de las tablas de vida modelo de Coale y Demeny 30/ y las esperanzas de vida a los 25 años (\mathring{e}_{25}) .

^{29/} Naciones Unidas. Manual X. Técnicas indirectas de estimación demográfica. Nueva York, 1986.

^{30/} Coale, A; Demeny, P. op. cit.

CUADRO 5

EDENH II : Población total con madre viva, con madre muerta y nacimientos del último año, por grupos quinquenales de edad.

				Pobl	ación				_
Edad del Informante	To	otal	Sin Declaración		érfanos madre	Huéi de	rfanos madre	Nacimie del últ año (imo
0-4	11	115	5	11	063		47	_	
5-9	9	973	5	9	822		146	_	
10-14	8	186	9	7	936		241	_	
15-19	6	637	10	6	259		368	359	
20-24	5	482	10	5	005		467	787	
25-29	4	165	7	3	564		594	580	
30-34	3	459	8	2	744		707	365	
35-39	2	763	11	1	928		824	265	
40-44	2	300	4	1	315		981	105	
45-49	1	982	12		901	1	069	10	
50-54	1	688	9		554	1	125	_	
55-59	1	395	3	•	270	1	122	_	
60-64	1	116	3		117		996	_	
65 y más	2	226	6		59	2	161		
TOTAL	62	487	102	51	537	10	848	2 471	

(*) Sólo hay 1 mujer con fecundidad ignorada, en el grupo 45-49.

Fuente: Tabulados originales de la EDENH II.

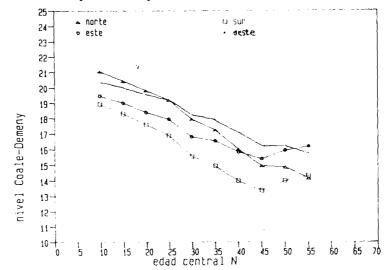
Para transformar las proporciones de no-huérfanos en las probabilidades condicionales de sobreviviencia se usó la fórmula de Brass:

(25 + N)/1(25) = W(N) S(N-5,5) + [1 - W(N)] S(N,5), en que W(N). se obtuvo interpolando linealmente en el cuadro 1, con M=26.48, valor calculado considerando los nacimientos vivos del último año anterior a la encuesta.

Los niveles de Coale y Demeny correspondientes a cada estimación de 1(25 + N)/1(25) se obtuvieron interpolando linealmente, para cada una de las familias, en los cuadros 207, 208, 209 y 210 del Manual X de Naciones Unidas y las esperanzas de vida a los 25 años ($\frac{8}{25}$) equivalentes se calcularon interpolando linealmente en las tablas de vida modelo de Coale y Demeny.

Estos primeros resultados muestran varios hechos i \underline{n} teresantes.

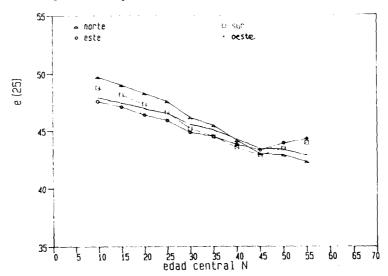
- a) las proporciones de no-huérfanos disminuyen paulatinamente con la edad de los informantes, tal como se esperaba, pues cuan to más se avanza en la edad de las personas son menos las que tienen su madre viva.
- b) Se sabe que la mortalidad en Honduras viene descendiendo en las últimas décadas y que las estimaciones de mortalidad que se obtienen con el método de orfandad materna corresponden al pasado, ubicándose en períodos más lejanos a medida que es mayor la edad de los encuestados. Se esperaría entonces un nivel en las tablas de vida modelo de Coale y Demeny, menor para las edades mayores. Esto se observa, tanto en la familia Norte como en la Veste. En cambio, las familias Sur y Este presentan un comportamiento contrario a partir de N = 45. (Gráficos 1 y 2). Aunque puede haber problemas con la declaración de las personas mayores que conducen a una subestimación de la mortalidad obtenida con la información dada por ellos, en este caso, como se está usando la misma información en las cuatro familias,


CUADRO 6.

EDENH II : Estimación de la mortalidad femenina adulta. Método de orfandad materna de W. Brass. (En las cuatro familias de las tablas de vida modelo de Coale y Demeny)

Edad del	Proporción				e		eles y Demer	ı y	e ₂₅	Equiva	lente		Diferen	ores
Informante	de no Hu é rfanos	Edad Central	W(N)	1(25+N)	Norte	Sur	Este	Oeste	Norte	Sur	Este	0este	de e25 e	
	5 ^P N-5	N		1 ₂₅									Absoluta años	Relativa %
0-4	0.9958	. 5					~-							
5-9	0.9854	10	0.5142	0.9797	21.00	18.91	19.44	20.35	49.69*	48.81	47.56	47.95	2.13	4.5
10-14	0.9705	15	0.7068	0.9629	20.39	18.32	18.99	19.98	48.98*	48.15	47.09	47.51	1.89	4.0
15-19	0.9445	20	0.7954	0.9384	19.79	17.60	18.38	19.49	48.29*	47.37	46.46	46.96	1.83	3.9
20-24	0.9147	25	0.8589	0.9066	19.19	16.92	17.94	19.15	47.61*	46.65	46.0Ō	46.57	1.61	3.5
25-29	0.8571	30	0.8930	0.8505	17.94	15.55	16.81	18.22	46.20*	45.20	44.86	45.54	1.34	3.0
30-34	0.7951	35	0.9122	0.7868	17.25	14.91	16.52	17.88	45.45*	44.53	44.57	45.16	0.92	2.1
35-39	0.7006	40	0.8673	0.6836	16.02	13.97	15.78	17.03	44.14	43.55	43.83	44.24	0.69	1.6
40-44	0.5727	45	0.7925	0.5488	14.97	13.38	15.35	16.19	43.05	42.94	43.41	43.34	0.47	1.1
45-49	0.4574	50	0.6028	0.4068	14.83	13.93	15.92	16.20	42.91	43.51	43.97	43.35	0.62	1.4
50-54	0.3300	55	0.3593	0.2429	14.19	14.36	16.19	15.77	42.27	4.96	44.24	42.90	1.97	4.7
55-59	0.1940	60	0.1332	0.1169										
60-64	0.1051													
65 y más	0.0266													
TOTAL	0.8261													

se debe pensar que este comportamiento tiene su origen en el hecho de que el patrón de mortalidad por edad de las mujeres en Honduras está mejor representado por las familias Norte y Ueste.


EDENH II, Niveles de mortalidad femenina adulta, en las 4 familias de las tablas de vida modelo de Coale y Demeny.

Fuente: Cuadro 6.

GRAFICO 2

EDENH II, Esperanzas de vida femenina equivalentes, en las 4 familias de las tablas de vida modelo de Coale y Demeny.

Fuente: Cuadro 6.

c) Por otro lado, las diferencias máximas entre las ê₂₅ o<u>b</u> tenidas, según la familia utilizada para hacer las estimaciones fluctúan entre un mínimo de 0.47 años y un máximo de 2.13 años. Empieza con una diferencia de 2.13 años para N=10 y se hace sistemáticamente más pequeña hasta llegar a un mínimo de 0.47 años para N=45, aumentando de nuevo en los dos últimos grupos. (Cuadro 6).

O sea , que el máximo error probable, si se supone que las cuatro familias de tablas modelo de Coale y Demeny re presentantodo el espectro posible de patrones de mortalidad por edad, al adoptar una de estas 4 familias para estudiar la morta lidad adulta en Honduras sería de 2.3 años en la esperanza de vida a los 25 años. Aún excluyendo los dos 10s.y el último grupo de edad tendríamos un error máximo probable de hasta alrededor de 1.8 años. Es una diferencia muy importante, ya que en cualquie ra de las 4 familias, la diferencia en la esperanza de vida fe menina a los 25 años entre un nivel de mortalidad y el siguien te es de alrededor de 1 año. Esto hace necesario considerar los antecedentes que estén disponibles para elegir la familia más adecuada y aminorar esta posibilidad de error.

d) Como se observa en el gráfico 2 los valores extremos, en casi todos los grupos de edad, corresponden a los de las familias NORTE y ESTE. En los primeros grupos los valores más altos son los de la familia NORTE y los más bajos de la familia ESTE para invertirse esta situación en los dos últimos; lo que sig-

nifica que si se escoge una de las familias, SUR u OESTE, el máximo error probable se hace menor. Si por ejemplo, se escoge la familia Oeste, el máximo error probable baja de 2.3 años a 1.7 años en la esperanza de vida a los 25 años y quitando las estimaciones correspondientes a N=10, 15 y 55, este máximo error probable desciende a 1.3 años.

Otro hecho, que se deduce del cuadro 6, se refiere a la ganancia en esperanza de vida a los 25 años en las mujeres de Honduras desde el momento al que correspondería la estimación que proviene de la edad central N= 55 hasta el momento correspondiente a la estimación que proviene de la edad central N=10. En la familia Norte es de 7.4 años (6.8 niveles de Coale y Demeny), en la Sur se ganan 5.9 años (5.5 niveles de Coale y Demeny), en la Este la ganancia es de 4.2 años (4.1 niveles de Coale y Demeny) y en la familia Oeste es de 5.1 años (4.6 niveles de Coale y Demeny). De esta manera, el descenso más rápi do en la mortalidad sería en la familia Norte y el más lento en la Este; la diferencia en la ganancia en estas dos familias, expresada en esperanzas de vida a los 25 años, alcanza a 3.2 años. Esta es una diferencia apreciable si se piensa que esto equivale más o menos a la misma cantidad de niveles de Coale y Demeny.

Estos resultados muestran la necesidad de utilizar el máximo de información independiente disponible sobre la mor talidad de la población a la que se aplicará el método de orfan

dad materna. Se trata de escoger como modelo de mortalidad, para determinar los niveles de mortalidad correspondientes a cada estimación de 1(25 + N)/1(25), aquel cuyo patrón de mortalidad sea más representativo del patrón de la población en estudio.

De este modo se reducen los posibles errores en las estimaciones.

2.2 Estructura de la mortalidad femenina adulta de Honduras.

Con el objeto de encontrar el modelo de mortalidad más adecuado se harán varias pruebas utilizando las tablas de mortalidad femenina de Honduras más confiables, desde el año 1950 en adelante, a saber: Tablas abreviadas de Mortalidad Femenina para los períodos 1949-1951, 1960-1962 y 1973-1975, ela boradas con las correspondientes defunciones registradas corregidas y los datos de los Censos Nacionales de Población de 1950, 1961 y 1974, respectivamente. Además las tablas obtenidas con la EDENH prospectiva para los años 1971-1972 y con las defunciones registradas en la EDENH II para el período 1981-1983.30/

En lo que sigue se realiza un estudio de los desvíos de los niveles de Coale y Demeny correspondientes a los valores de l_x (para x=25, 30, ..., 80) de las 5 tablas de vida de Honduras antes mencionadas. Los niveles de Coale y Demeny se obtienen interpolando linealmente en cada una de las 4 fami

^{30/} Véase Anexo I.

lias; se considera la diferencia entre el nivel mayor y el menor en cada una de las familias y la suma de los valores absolutos de las diferencias entre cada nivel y el promedio aritmético de ellos $(\sum_{x} |N(x)-\overline{N}|)$.

Para las cuatro tablas más recientes los menores desvíos respecto al promedio se producen con la familia Norte; la excepción es con la del período 1949-1951 para la que se minimiza la desviación con la familia Oeste. En segundo lugar está la familia Oeste para los períodos 1973-1975, 1971-1972 y 1960-1962; sin embargo, ésta es la última en el período 1981 - 1983.

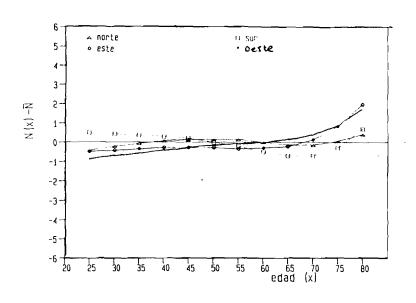
Un resumen de estos resultados se presenta en el cuadro 7 (El detalle puede verse en el Anexo II, cuadro II.1)

CUADRO 7

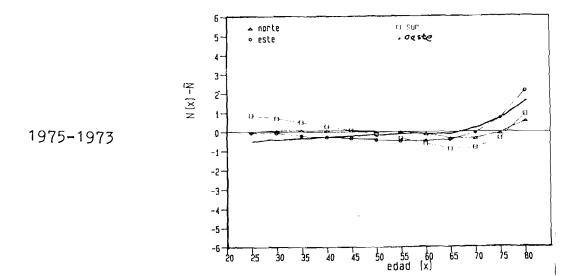
Honduras. Suma de los desvíos de cada nivel respecto a su nivel promedio, correspondientes a cada l(x) de las tablas de vida femeninas de Honduras, en las cuatro familias de Coale y Demeny. a

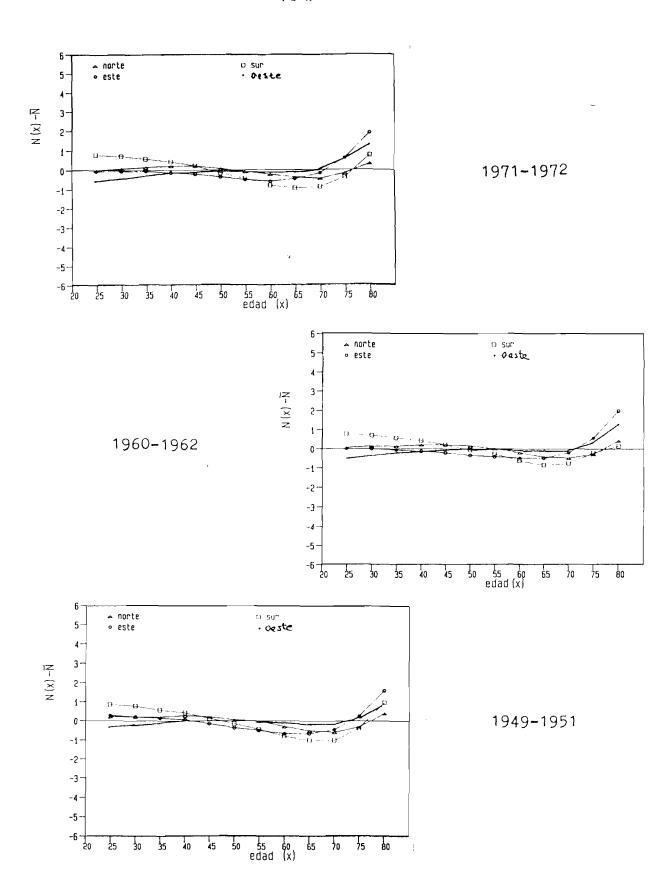
	Des	svíos ($\sum_{\mathbf{x}}$	- N(x) - N		
Familia	1981-1983	1973–1975	1971–1972	1960-1962	1949-1951
OESTE	6.22	4.69	3.96	3.16	2.21
NORTE	1.87	1.84	2.34	2.69	3.25
ESTE	5.94	5.61	5.09	5.02	5.10
SUR	4.93	6.59	6.87	5.64	7.49

Se han considerado los nivels N(x), correspondientes a cada l(x) de las tablas de vida, desde x = 25 hasta x = 80.


Si se examinan con más detalle las diferencias $(N(x) - \overline{N})$, se observa que en las cuatro familias éstas son menores para las edades X=40, 50 y 55 (ver Gráfico 3). Además, si se quitan los puntos extremos, estos desvíos respecto al promedio son menores en la familia Oeste que en la Norte, con la excepción de la tabla correspondiente al período 1981-1983. (Gráfico 3).

Estos resultados no son suficientes para tomar una decisión acerca de si debe utilizarse el modelo Oeste o el Norte.


Es necesario hacer otra prueba, quizás más apropia da para el problema que se está abordando. Los valores de 1(x), considerados en el ejercicio anterior, son acumulativos, puesto que es la probabilidad de sobrevivir desde el nacimiento hasta la edad exacta x, y por lo tanto, no son lo más representativo de la estructura de la mortalidad por edades. Aunque algo similar sucede con las probabilidades condicionales de sobrevivencia 1(x)/1(25), éstas son a partir de los 25 años y no del nacimiento y, por lo tanto, más representativas de la estructura de la mortalidad adulta que las 1(x). Además, en el método de orfan dad materna se obtienen estimaciones, precisamente, de estas probabilidades.


Por estas razones se hace a continuación un ejercicio similar al anterior, considerando ahora los niveles en las tablas de vida modelo de Coale y Demeny correspondientes a las proba

HONDURAS. Desvíos de cada nivel respecto a su nivel promedio, correspondientes a cada l(x) de las tablas de $\underline{v}i$ da femenina de Honduras, en las 4 familias de Coale y Demeny.

1981-1983

Fuente: Anexo II, Cuadro II.2.

bilidades de sobrevivencia l(x)/l(25). Un resumen de estos resultados se presentan en el cuadro 8 (El detalle puede verse en el anexo II, Cuadro II.3).

CUADRO 8

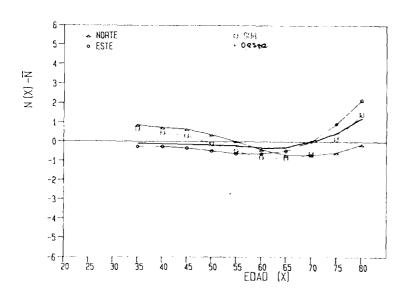
Honduras. Suma de los desvíos de cada nivel respecto a su nivel promedio, correspondientes a cada $l(x) \ / \ l(25)$ de las tablas de vida femeninas de Honduras, en las cuatro familias de Coale y Demeney. a

	Des	$vios \left(\sum_{\mathbf{x}} \mathbf{N} \right)$	(x)-N)		
Familia	1981-1983	1973-1975	1971-1972	1960-1962	1949-1951
OESTE	3.33	4.51	4.09	3.61	3.93
NORTE	5.02	3.47	5.71	5.30	5.16
ESTE	6,23	9.54	8.16	8.66	7.97
SUR	5.87	7.06	8.40	8.29	8.98

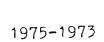
Se han considerado los niveles N(x), correspondientes a cada 1(x) / 1(25) de las tablas de vida, desde x = 35 hasta x = 80.

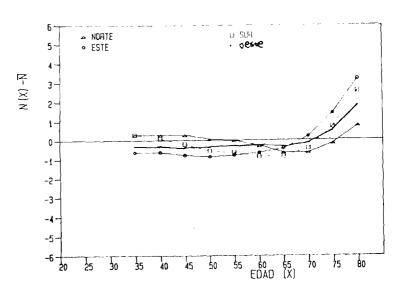
pecto a los del ejercicio anterior. En primer lugar, se observa una mayor sensibilidad en las estimaciones de los niveles de Coale y Demeny con las probabilidades de sobrevivencia l(x)/l(25) que con las l(x). (Comparar gráfico 3 con gráfico 4). Por otra parte, el desvío más pequeño de los niveles de Coale y Demeny en las tablas de mortalidad de los períodos 1981-1983, 1971-1972 y 1960-1962, respecto a su promedio es en la familia Oeste y la sigue la familia Norte. Para las tablas de 1973-1975

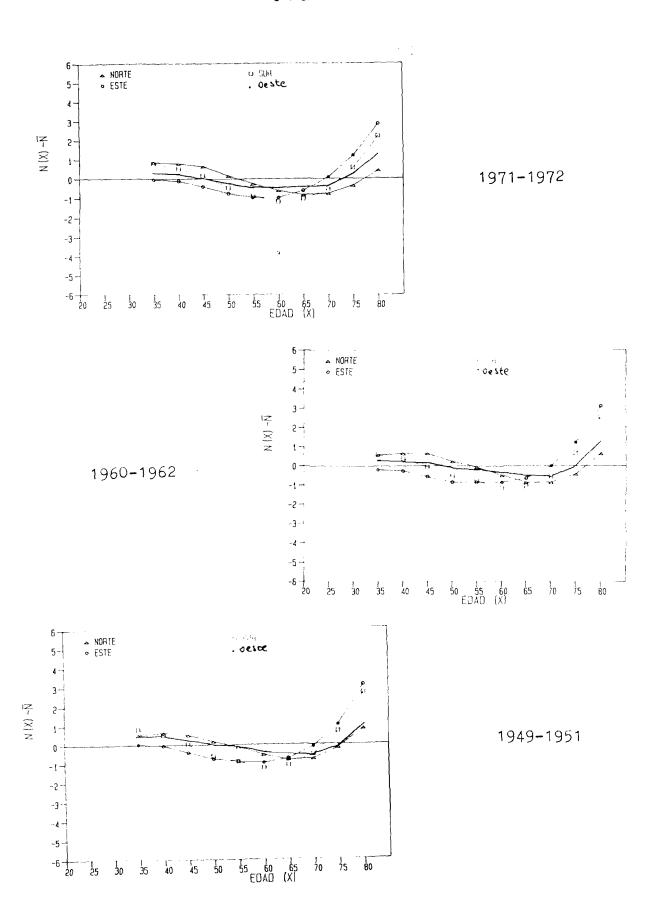
y 1949-1951 se mantiene la misma situación que en la prueba que se hizo con las l(x). En resumen, en todas las tablas de vida de Honduras, con la excepción de la correspondiente al período 1973-1975, el menor desvío respecto al nivel promedio es en la familia Oeste. En la tabla 1973-1975 el menor desvío es en la familia Norte, y le sigue la familia Oeste con sólo una unidad de diferencia (Cuadro 8); si no se consideran los puntos x=75 y x=80, también sería la familia Oeste la que tendría menor des vío respecto al promedio en este período (Gráfico 4).


Al hacer este mismo ejercicio usando directamente las probabilidades de muerte 5^qx , desde x=25 hasta x=75, los desvíos respecto al nivel de Coale y Demeny promedio, resultaron mayores que en los dos ejercicios anteriores y además muy parecidos en las familias Ueste y Norte.

Se puede concluír que las mejores estructuras de mortalidad femenina adulta para la población de Honduras en las tablas de vida modelo de Coale y Demeny, son las familias Oeste y Norte.


Al interpolar los valores de l(x)/l(25), obtenidos con el método de orfandad materna, en las familias Norte y Oeste para determinar los correspondientes niveles de mortalidad, se observa lo siguiente;


a) Al hacerlo en la familia Norte, la mortalidad femenina


HONDURAS. Desvíos de cada nivel respecto a su nivel promedio, correspondientes a cada l(x)/l(25) de las tablas de vida femeninas de Honduras, en las 4 familias de Coale y Demeny.

1981-1983

Fuente: Anexo II, Cuadro II.4.

adulta es subestimada en las edades más jóvenes (x=35,40,45) y es subestimada en las edades x=60,65,70. Esto se aprecia en el gráfico 4, períodos 1981-1983, 1973-1975, y 1971-1972. También se ve para x=80 hay una subestimación (ver gráfico 4, períodos 1973-1975, 1971-1972).

- b) Si se utiliza la familia Oeste, la mortalidad adulta femenina es subestimada para x=75 y x=80 (gráfico 4, períodos 1981-1983, 1973-1975, 1971-1972).
- c) Tanto las subestimaciones como las sobreestimaciones son, en general, menores en la familia Deste que en la Norte, con la ex cepción de las correspondientes a x=75 y x=80 (gráfico 4).

De lo anterior se deduce también que en parte las tendencias de mortalidad que se obtienen con el método de orfandad materna se explican por el modelo de mortalidad utilizado para determinar los niveles de mortalidad que corresponden a ca da valor de l(x)/l(25).

Al usar la familia la tendencia es más pronuncia da que si se usa la Oeste. En la familia Norte habría un acele rado descenso de la mortalidad femenina adulta. De acuerdo con los datos de orfandad materna de la EDENH II se ganarían 6.8 niveles en las tablas de vida modelo de Coale y Demeny en el período de tiempo que va de la estimación obtenida a partir de la edad central N=10 y la de edad central N=55 (ver cuadro 6).

El análisis del gráfico 4 ratifica un hecho ya se ñalado. La subestimación de mortalidad obtenida generalmente con los grupos de informantes de más edad, se debe, además de otras posibles razones, a que la estructura de la mortalidad en las edades más viejas no es la del modelo seleccionado. Si se escoge el modelo más adecuado la magnitud de esta subestimación disminuye.

Finalmente, se debe concluír que es la familia des te la que se adapta mejor para el estudio de la mortalidad femenina adulta con el método de orfandad materna, para la población de Honduras.

2.3 Uso del modelo de mortalidad de W. Brass.

Con el propósito de utilizar como modelo de mortal<u>i</u> dad la propia estructura de Honduras se aplicó el sistema logito de Brass, en la siguiente forma:

$$Y'(x) = \alpha' + \beta Y_S'(x)$$

 $Y'(x) = \frac{1}{2} \ln \frac{1 - 1'(x)}{1'(x)}$ en que $1'(x) = \frac{1(25 + N)}{1(25)}$ son las pro

babilidades condicionales de sobrevivencia de las mujeres desde los 25 hasta los (25+N) años de edad (N=0,10,15,...,55), obtenidas de la aplicación del método de orfandad materna.

$$Y'_{S}(x) = \frac{1}{2} \ln \frac{1 - 1'(x)}{1'(x)}$$
 en que los valores de

 $l\binom{s}{x}$ son también probabilidades condicionales de sobrevivencia desde los 25 años, pero éstas se han obtenido en las distintas tablas de mortalidad de Honduras usadas como standard.

Se ha supuesto que 3=1,0 sea que la estructura de la mortalidad por edad de las mujeres adultas es la misma que la de las tablas de vida femenina del país. Esto además significa suponer que la estructura de la mortalidad femenina adulta ha permanecido constante durante aproximadamente 25 años. Así es posible estimar los niveles de mortalidad dados por el méto do de orfandad materna en relación a los niveles de cada tabla

usada como standarda través del parámetro $\angle = Y'(x) - Y'_s(x)$.

(Anexo II, Cuadro II.5).

Estos resultados muestran que: (Gráfico 5)

- mantes (crece), como se esperaba, ya que la mortalidad crece hacia el pasado. Este crecimiento es prácticamente lineal.
- b) Se ratifica así, que los problemas que se presentan con las estimaciones que provienen de los informantes de más edad están relacionados con las diferencias existentes entre el patrón de mortalidad de la población en estudio y el modelo escogido.
- c) En relación a los niveles de mortalidad de la tabla de vida del período 1981-1983, se observa que las estimaciones que se hacen con la información de los grupos más jóvenes(N=10, 15,20 y quizás N=25) subestiman la mortalidad ya que ellas corresponden a varios años antes de la encuesta, más o menos a los años 1975-1980, por lo que se esperaría > 0 desde N=10.

Si se considera que la tabla de vida de Honduras de este período se construyó con las defunciones registradas en la EDENH II, lo que la hace muy confiable, es posible que efectiva mente se está subestimando la mortalidad con la información de esos grupos de edad y ello podría deberse al "efecto de adopción"

HONDURAS. Valores del parámetro \propto en el sistema logito de Brass, correspondientes a las estimaciones de mortalidad obtenidas con orfandad materna, usando como standard tablas de mortalidad femenina de Honduras.

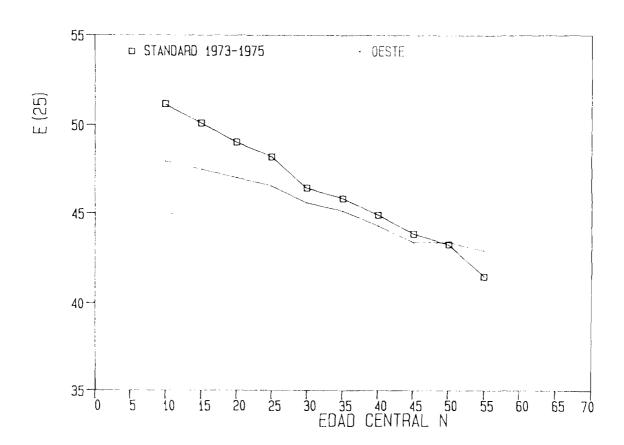
Fuente: Anexo II, Cuadro II.5

que varios autores han investigado, entre ellos Palloni 31/.

Además se estimaron esperanzas de vida a los 25 <u>a</u> ños de edad. Para ello se consideraron los valores del paráme tro \ll obtenidos con las tablas de los períodos 1971-1972 y 1973-1975 ya que las estimaciones que se obtienen con el méto do de orfandad materna son para un período alrededor de 1970-1975. A cada uno de los valores de \ll del cuadro II.5, Anexo II le corresponde una tabla de vida con raíz $1'(25) = \frac{1(25)}{1(25)} = 1$.

Así, se obtiene una logito estimado : $\hat{Y}'(x) = \alpha + Y'^S(x)$ para cada x = 25,30,...80 y los respectivos l_X' . Se calculan las demás funciones de la tabla de la forma habitual para obtener la esperanza de vida a los 25 años.

CUADRO 9.


Honduras: Esperanzas de vida femenina a los 25 años de edad, obtenidas a partir de los valores de \propto estimados con las tablas de vida de Honduras como standard.

Edad X	Edad Central N	ě ₂₅₍₇₃₋₇₅₎	² €25(71-72)
35	10	51.11	50.41
40	15	50.11	49.50
45	20	48.98	48.50
50	25	48.15	47.92
. 55	30	46.44	46.51
60	35	45.88	46.00
65	40	44.91	44.87
70	45	43.83	43.80
75	50	43.18	43.12
80	55	41.45	41.75

Como se esperaba, en ambos casos, la esperanza de vida a los 25 años disminuye con el aumento de la edad de los informantes. La disminución de la mortalidad con el tiempo parece exagerada, 9.66 años en la e_{25}° en un caso y 8.66 años en el otro. Esto es porque la obtenida con los grupos de edades más jóvenes es muy alta lo que se ve claramente si se com para con la e_{25}° = 47.74 de la tabla 1981-1983. Incluso son valores mayores a los calculados con las cuatro familias de Coale y Demeny.

En el gráfico 6 se muestran las esperanzas de vida a los 25 años obtenidas con el sistema logito con la tabla de 1973-1975 como Standard y las correspondientes en la familia Jeste. Hay una importante diferencia en las esperanzas de vida que provienen de los 4 grupos más jóvenes de hijos informantes (más 1 año), mientras que a partir de N=30 esta diferencia es menor a 1 año y se hace más pequeña hasta prácticamente coincidir cuando N= 50.

HONDURAS. Esperanzas de vida femenina a los 25 años obtenidas con el sistema logito y con la familia Oeste.

Fuente: Cuadros 6 y 9.

2.4 <u>La estimación de T para el caso de Honduras con</u> los datos de la EDENH II.

Se aplican los métodos propuestos por Brass-Bamgboye, la simplificación hecha por Brass y el propuesto por los profesores Chackiel y Orellana. Además, en el caso del promedio aritmético se calcula el respectivo intervalo de confianza. Tam bién se calcula la mediana correspondiente de la distribución de las muertes de las madres y por último, la mitad del tiempo promedio de exposición al riesgo de morir de las madres (N/2).

Los resultados se presentan en el cuadro 10.

CUADRO 10.

EDENH II. Tiempos correspondientes a las estimaciones obtenidas con el método de orfandad materna.

Edad Central N	Brass y Bamgboye	Brass	Mediana 	Promedio Aritmético	Mitad del tiempo de Exposición a Riesgo	
5	1981.5	1981.4	1981.5	1980.8	1981.3	
10	1979.2	1979.1	1979.5	1978.8	1978.8	
15	1977.0	1977.0	1977.5	1976.6	1976.3	
20	1975.1	1975.1	1975.5	1974.8	1973.8	
25	1973.5	1973.4	1973.5	1972.7	1971.3	
30	1972.1	1972.0	1972.5	1970.6	1968.8	
35	1971.0	1970.8	1970.5	1968.6	1966.3	
40	1970.1	1970.0	1969.5	1966.4	1963.8	
45	1969.5	1970.2	1968.5	1964.5	1961.3	
50	1969.2	1973.8	1966.5	1962.3	1958.8	
55	1968.3		1963.5	1960.1	1956.3	
60	1966.3		1961.5	1957.6	1953.8	

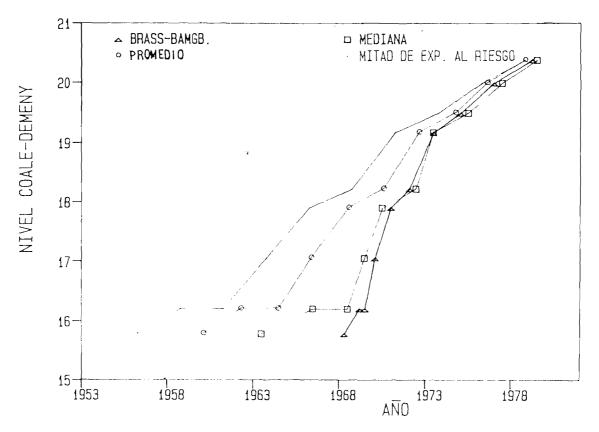
En el cálculo de T(N) según el método de BrassBamgboye se hizo necesario extrapolar la función f(u) tabulada
en el cuadro 3, pues como aparece permite obtener valores sólo
hasta u= M+N= 75 años. Para estimar el tiempo T(N) para N=50,
55 y 60 se hizo una extrapolación. Se analizó el comportamien
to de f(u+1)-f(u) y se obtuvieron los valores que se muestran
en el anexo III, gráfico III.1. En el mismo Anexo III, cuadro
III.1 están los detalles del cálculo de T(N), tanto para BrassBamgboye como para el método de Brass.

La fórmula propuesta por Brass es aplicable sola mente hasta N=50 debido al supuesto que él hace para obtener la.

Como se dispone de la distribución de las muertes de las madres, por grupos quinquenales de edad de los informantes, desde el año 1900 hasta el momento de la encuesta, es posible determinar el año promedio aritmético y el año mediana de esta distribución. Además se obtiene el respectivo intervalo de confianza correspondiente a cada estimación.

Como una referencia se considera también la mitad del tiempo promedio de exposición al riesgo de muerte de las madres, pues como se ha visto en la deducción de la fórmula de Brass-Bamgboye si se supone que l(x) es lineal, lo que corresponde a una muy alta mortalidad, se tiene que el valor de

T es precisamente igual a esa mitad. En nuestro caso ese valor es $T(N) = \frac{1}{2}N$. Se espera, entonces, que en las poblaciones que se estudian T(N) sea menor que $\frac{1}{2}N$.

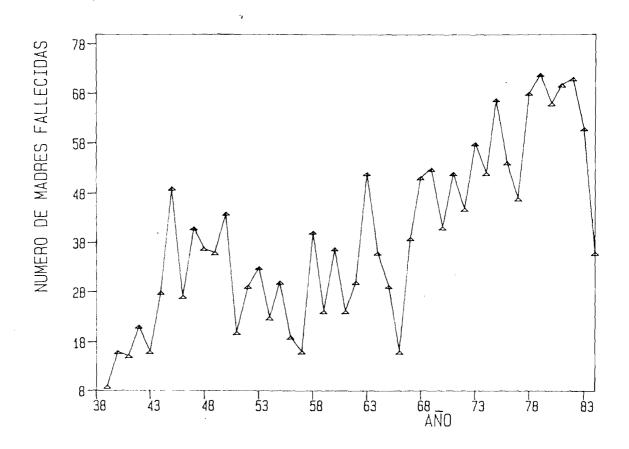

El gráfico 7, muestra estos resultados en la familia Oeste de las tablas de vida modelo de Coale y Demeny.

En los 5 primeros grupos (hasta N=20), el momento al que corresponden las estimaciones de 1(25 + N)/1(25) con orfandad materna es prácticamente el mismo con todos los métodos. A partir de N=25, se puede afirmar que las estimaciones con Brass-Bamgboye, Brass y la mediana son distintas al promedio aritmético, pues caen fuera del intervalo de confianza correspondiente (Anexo III, Cuadro III4). La diferencia entre el promedio y las otras estimaciones del tiempo aumenta cuanto mayor es la duración de la exposición al riesgo de muerte de las madres. Quien aleja más el momento al que correspondan las estimaciones es el promedio aritmético.

Las fórmulas de Brass-Bamgboye y de Brass dan resultados parecidos, salvo para N=45 y N=50, como se esperaba, de acuerdo a lo dicho cuando ellas se deducen. De aquí en adelante se deja fuera del análisis la fórmula de Brass.

Desde N=35 la mediana se ubica entre el promedio aritmético y las estimaciones con la fórmula de Brass-Bamgboye.

EDENH II. Niveles de Coale y Demeny, en la familia Oeste, en el tiempo, según varios métodos de estimación.


Fuente: Cuadros 6 y 10.

Por otra parte, todos los métodos ubican las estimaciones de mortalidad en años más cercanos que si se toma $T = \frac{1}{2} N \text{ 'como se esperaba.}$

De acuerdo a las características que presenta la distribución de las muertes de las madres en el tiempo, como se ve en el gráfico 8, se espera que la mediana esté a la derecha del promedio 32/ y así lo muestran los resultados del cuadro 10. Se ha escogido la distribución de muertes de madres del grupo 35-44 de hijos informantes.

^{32/} WONNACOTT, T; WONNACOTT, R. Introducción a la estadística Ed. Limusa, México, 1979.

EDENH II. Distribución de las muertes de las madres de los hijos informantes del grupo edades 35-44 años.

Fuente: Tabulados originales de la EDENH II.

En relación al año promedio de las muertes de las madres y a la mediana de esta distribución hay que hacer algunos comentarios.

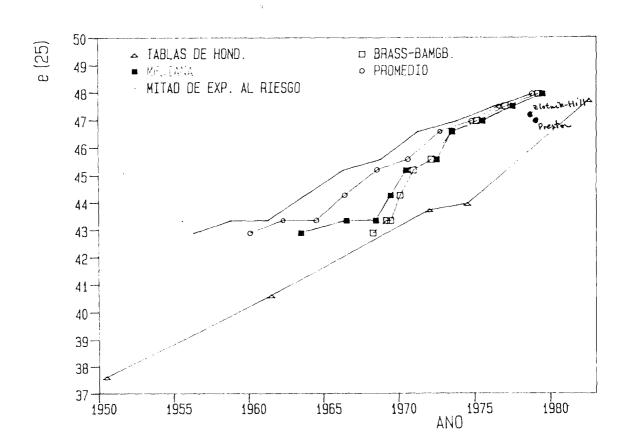
Si todas las madres de los informantes de un grupo de edad mueren el mismo año, no hay duda de que el promedio o la mediana representan exactamente lo que sucede en la realidad. Aún más, si hubiera una gran acumulación de muertes alrededor de una fecha determinada estas medidas de tendencia central serían muy satisfactorias. Sin embargo, esto no es así, como lo muestra el gráfico 8. Por otro lado, a medida que aumenta el tiempo de exposición al riesgo crece la dispersión en la distribución de las muertes de las madres, de manera muy importante.

El valor de la desviación standard toma valores cada vez mayores con el aumento de N. (Ver Anexo III, Cuadro III.4).

A pesar de estas limitaciones el promedio y la mediana muestra mayor coherencia que el método de Brass-Bamgboye puesto que aleja el momento al que corresponden las estimaciones de mortalidad a medida que aumenta N, de acuerdo a lo esperado.

Mientras que el método de Brass-Bamgboye, si bien aleja el tiempo a medida que crece N lo hace más lentamente a partir de N=40, llegando a tener una diferencia de 4.8 años con la mediana y de 8.7 con el promedio, cuando N=60.

Una forma de poner a prueba las distintas estimacio


nes de T(N) es comparar el nivel de la mortalidad adulta usan do las distintas tablas de vida femenina de Honduras, correspondientes a los períodos 49-51, 60-62, 71-75 y 81-83 ya con sideradas, con las estimaciones obtenidas con la orfandad mater na distribuidas en el tiempo según cada uno de los métodos aplicados. Para tener una medida equivalente se hace la comparación con la esperanza de vida de las mujeres a los 25 años de edad.

Las esperanzas de vida a los 25 años de edad tomadas de las respectivas tablas de vida son:

Período	è ₂₅
1981-1983	47.74
1973-1975	43.96
1971-1972	43.74
1960-1962	40.63
1949-1951	37.62

Con estos datos más las \mathring{e}_{25} en el modelo OESTE tomadas del cuadro 6 y las fechas en el cuadro 10 se constr<u>u</u> ye el gráfico 9.

HONDURAS. Esperanzas de vida femenina a los 25 años de edad para distintos momentos obtenidas de varias fuentes.

Fuente: Cuadro 6 y 10

Anexo I, Cuadros I.1, I.2, I.3, I.4, I.5.

Si se acepta que las tablas de vida de Honduras utilizadas son representativas de la mortalidad femenina del país en cada uno de sus períodos, la primera conclusión es que con el método de orfandad materna se subestima la mortalidad femenina adulta.

La esperanza de vida de las mujeres a los 25 años tiene un crecimiento prácticamente lineal entre los años 1950 y 1970-1975, para tener un mayor aumento entre los años 1970-1975 y 1981-1983.

El fenómeno de adopción afecta principalmente aquellas estimaciones que provienen de los informantes más jóvenes, ya que al declarar como viva a su madre adoptiva, estando muerta la verdadera, conduce a una subestimación de la mortalidad femenina adulta. Este efecto disminuye o se anula a medida que se aumenta en la edad de los informantes.

Las estimaciones que provienen de los hijos encuesta dos mayores de 45 o 50 años pueden estar afectadas por errores de declaración en su edad $^\circ$ por haber declarado viva a su madre muerta en casos de incertidumbre. Además, como se ha visto en este trabajo, por las diferencias entre el patrón de mortalidad entre la población en estudio y el del modelo utilizado para estimar los niveles de mortalidad a partir de las probabilidades 1(25+N)/1(25).

La distribución de las esperanzas de vida en el tiempo, de acuerdo a los distintos métodos usados muestra que de las estimaciones las que se aproximan mejor a los valores de las tablas de vida, desde N=35, son las obtenidas con Brass-Bamgboye. Para N=40 la diferencia es un poco mayor de 1 año en la e_{25} , disminuyendo a 0.5 años o menos en los grupos siguientes.

En el otro extremo está el promedio, el que al llevar las estimaciones a tiempos más lejanos mantiene en forma casi constante una alta subestimación de la mortalidad que se manifiesta en diferencias de alrededor de 2.0 años y de hasta 2.5 años en las esperanzas de vida a los 25 años, en algunos casos.

La mediana queda ubicada en una posición intermedia, pero siempre más cerca de la estimación con Brass-Bamgboye que del promedio.

Otra posibilidad es que sistemáticamente en las tablas de vida femenina de Honduras se esté sobrestimando a mor
talidad adulta, es decir, que se haya hecho una sobrecorrección
de las defunciones. De todas maneras, es muy difícil que sea
tan grande como para llegar a 2 años en la esperanza de vida
a los 25 años. Si se piensa en términos de las tablas de vida
de Coale y Demeny esto equivaldría a que en las tablas de vida
femenina de Honduras se estaría sobrestimando la mortalidad en
alrededor de 2 niveles de Coale y Demeny.

2.5 El uso de dos fuentes de datos; Proposiciones de Zlotnik-Hill, Preston y Chackiel - Orellana.

Se han desarrollado otros métodos que utilizan dos encuestas o censos que tengan la información sobre orfandad de madre. Estos métodos permiten estimar la mortalidad femenina adulta correspondiente al período de tiempo entre ambas encues tas. A diferencia de los métodos anteriores, éstos tienen la ventaja de que no se necesita estimar el tiempo al que corresponden las estimaciones de mortalidad ya que ellas se refieren al período entre ambas encuestas. En el trabajo de I. Timaeus 33/ se presentan cuatro de ellos.

Aquí se aplica el propuesto por Zlotnik y Hill(1981) y el de Preston (1983).

El primero requiere de dos fuentes de datos separados por 5 o 10 años. Se calcula la proporción de no-huérfanos para una cohorte hipotética con base a las proporciones de no-huérfanos de las dos fuentes conocidas, utilizando el cambio en la no-orfandad por cohortes. Las proporciones de no-huérfanos de esta cohorte hipotética son convertidas en valores de 1(25+N)/1(25) por los procedimientos conocidos y se considera que estas probabilidades condicionales corresponden al período comprendido entre las fechas de ambas encuestas.

las fórmulas son las siguientes:

S(N,s)=S(N,2) si $N \angle T$ S(N,s)=S(N-T,s) * S(N,2)/S(N-T,1) si $N \ge T$ en que: T es el número de años entre las dos fuentes disponibles.

S(N,1) es la proporción de no-huérfanos de madre en la fuente 1, para edades entre N y N+5.

S(N,2) es la proporción de no-huérfanos de madre en la fuente 2, para edades entre N y N+5.

S(N,s) es la proporción de no-huérfanos de madre en la cohorte hipotética, para edades entre N y N+5.

Se aplicó este procedimiento a los datos del Censo de Población de Honduras de 1974 y a los de la EDENH II.(Ver Anexo III, Cuadro III.2). Se extrapoló linealmente para llevar las proporciones de no-huérfanos a 1973.78 y tener un período de tiempo entre el Censo y la Encuesta de 10 años, necesarios para usar el método de Zlotnik-Hill. Para transformar las proporciones de no-huérfanos de la cohorte hipotética en las proporciones de no-huérfanos de sobrevivencia se usó la fórmula propuesta originalmente por Brass. En el cuadro III.2 se presentan los resultados, incluyendo las esperanzas de vida a los 25 años de edad correspondientes en el modelo DESTE. Tomando un promedio de las extractorea en el modelo DESTE años, que es representativa del nivel de mortalidad femenina del período 1973.78-1983.78.

Hay al menos dos problemas con este método. Si las dos fuentes usadas no distan 5 o 10 años, debe hacerse una

interpolación y esto puede provocar una distorsión en los resultados. En este caso, si en lugar de usar la información del censo de 1974, se hubiera hecho con la de la EDENH I, al interpolar hubiera tenido para 1973.78 proporciones de no-huérfanos mayores y, por lo tanto, se habría obtenido una menor mortalidad. Esto significa que las fuentes a usar deben ser compatibles, de lo contrario, los resultados se verán afectados.

Preston propone otro método usando las tasas de cre cimiento de sobrevivencia de las madres. A diferencia de Zlotník y Hill utiliza los cambios en la no-orfandad para cada edad.

Se basa en las generalizaciones de las relaciones en una población estable desarrolladas por él y Coale (1982).

Tiene la ventaja de que no requiere que la separa - ción entre las dos fuentes deba ser de 5 o 10 años, sino que puede ser cualquier valor.

Obtiene las siguientes fórmulas:

$$5 \underbrace{\begin{array}{c} N+2.5 \\ 5 \\ N \end{array}}_{0}$$

 $S(N,s) = S(N,\bar{t}) + e$

$$S(N,t) = \sqrt{S(N,1) \cdot S(N,2)}$$

$$\frac{r^{S}}{5N} = \ln \left[\frac{S(N,2)}{S(N,1)} \right] / T \qquad ; \text{ la notación es la misma que en el método anterior.}$$

Los resultados de la aplicación de este método a las mismas fuentes se muestran en el Anexo III, Cuadro III.3. Igual que antes se usó la fórmula original de Brass para obtener las probabilidades 1(25+N)/(25). La esperanza de vida promedio para el período 1974.17 - 1983.78 es $^{\circ}_{25}$ = 47.1 años.

Ambas estimaciones pueden observarse en el gráfico 9.

También se aplicó a los datos de la RETROENDENH y del Censo de 1974, obteniendo malos resultados, posiblemente debido a problemas con la información básica.

Las estimaciones obtenidas con ambos métodos (con base en el Censo 1974 y la EDENH II) son muy parecidas. Resultan valores, que representan un promedio de la experiencia de mortalidad del período de referencia; en este caso parecen bastante razonables. (ver gráfico 9).

Como se ha señalado, estos dos últimos métodos tienen ventajas sobre los otros que requieren calcular el tiempo al que corresponden las estimaciones de mortalidad.

Sin embargo, tienen el inconveniente de que se requiere que ambas fuentes sean comparables, lo que generalmente no sucede.

Ia proposición de J. Chackiel y H. Orellana 34/ per mite, utilizando el año de fallecimiento de las madres, esti - mar la mortalidad femenina adulta para períodos recientes con los datos de una sola encuesta. Se pueden considerar las proporciones con madre viva 5 y 10 años antes de la encuesta como dos fuentes y luego aplicar alguno de los métodos anterio - res. Tiene la ventaja de que se usa una sola fuente y, por lo tanto, no hay problemas de comparabilidad por omisiones, erro res o migración. Los autores señalan como limitaciones: a) El supuesto de no existencia de asociación entre la mortalidad de nijos y madres se hace más exigente a medida que se extiende más atrás en el pasado, pues son más hijos que muerieron y no pudieron informar sobre su condición de orfandad. b) Al fraccio nar la información se está trabajando con un número de casos me nor y, por lo tanto, con mayor riesgo de errores.

Sin embargo, parecen claras las ventajas de esta proposición. Las limitaciones planteadas podrían superarse, aun que no totalmente, si no se extiende mucho el tiempo hacia el pasado y si la encuesta considera un número apropiado de casos.

341 Chackiel, J; Orellana, H. Op. ait.

III. APLICACION DEL METODO AL ESTUDIO DE LA MORTALIDAD FEMENINA ADULTA A NIVEL REGIONAL

Uno de los supuestos básicos del método de orfandad materna es que la población en estudio debe ser cerrada a la migración. Supuesto que puede considerarse generalmente válido cuando se aplica al método a nivel nacional.

Si se aplica a subpoblaciones, por áreas geográf \underline{i} cas, probablemente sus resultados estén afectados por la migración interna.

Si hay una mortalidad diferencial entre la región de origen y la de destino, entonces parte de la mortalidad ocurrida en la región de origen se estimaría en la de destino. En caso de que la zona de origen tenga una mortalidad mayor, el efecto sería una sobrestimación de la mortalidad en la zona de destino, pero no habría efecto en la zona de origen. Esto es, sin considerar el posible efecto de la orfandad de madre. Por otro lado, si ambas regiones tienen los mismos niveles de mortalidad y la migración es diferencial según la condición de orfandad, o sea, si los huérfanos tienen una mayor propensión a migrar que los no-huérfanos, entonces la mortalidad se sobrestimaría en la región de destino y se subestimaría en la de origen. Puesto que los inmigrantes informarían sobre la muerte de sus madres en la región de residencia ac-

tual y posiblemente ella murió en la región de nacimiento, o en otra región. En consecuencia, no estarían presentes para informar sobre la muerte de sus madres en el lugar de origen.

Esto significa que si los migrantes van de una región de mayor mortalidad a otra con un nivel de mortalidad me nor y si además esta migración fuera diferencial según la con dición de orfandad materna, se tendría una sobreestimación en la región de destino provocada por este doble efecto. En tanto, que en la región de origen habría una subestimación originada por el efecto de la orfandad materna.

Precisamente, Zenón Ceballos 35/, en su estudio so bre la mortalidad según las regiones de Planificación de República Dominicana, señala: ".... existen algunas causas que podrían explicar los escasos diferenciales de la mortalidad de la población femenina con edades entre 45 y 75 años en las regiones, entre las cuales se encuentran la migración interregional....".

Ramino Coa 36/ concluye que la información de orfandad materna en el caso de Bolivia sobreestima la mortalidad adulta femenina en el área urbana y agrega que "...una posible migración de hombres y mujeres huérfanos de madre podrían sobreestimar la mortalidad femenina adulta".

^{35/} Ceballos, Z. op. cit.

^{36/} Coa, R. op. cit.

En el informe de la EDENPAR 77 37/, cuando se refie re a las diferencias resultantes entre la mortalidad femenina adulta de las zonas urbanas y rurales se dice: "Un hecho que probablemente incide en el suavizamiento de las diferencias por zona en la mortalidad adulta es que las estimaciones se basan en la información proveniente de respuestas que dan los hijos acerca de la sobrevivencia de su madre, pero sin determi nar el lugar ni la fecha de ocurrencia. Esto podría repercutir en una subestimación de la mortalidad de la población rural, ya que el movimiento rural-urbano es bastante intenso en el país".

Cuando se hizo un análisis de la mortalidad femenina adulta, según las regiones de salud de Honduras, se plantea dentro de las conclusiones: "Estas estimaciones, hechas con el método de orfandad materna, pueden estar afectadas por la migración interna. Con el fin de eliminar los efectos de la migración podría aplicarse el método de orfandad materna, a nivel regional, según el lugar de nacimiento del encuestado". 38/

En este capítulo se analiza la migración interregional según la condición de orfandad. Se estima la mortalidad femenina adulta considerando la región de residencia actual
del hijo entrevistado. Luego, tratando de encontrar algunas so
luciones se hacen estimaciones de mortalidad, utilizando la
37/ Arévalo, J. y otros Op. cit.

^{38/} Cuenca, L. Op. cit.

región de nacimiento del entrevistado y la región de residencia hace 5 años.

3.1 Análisis de la migración interregional según la condición de orfandad.

En este trabajo se usan las regiones de Salud de Honduras.

Los Departamentos que componen las regiones son: 39/

Región I (Central): Francisco Morazán y El Paraíso.

Región II(Central-Occidental): Comayagua, Intibucá y La Paz.

Región III (Nor -Occidental): Cortés, Santa Bárbara y Yoro.

Región IV(Sur): Choluteca y Valle.

Región V (Uccidental): Copán, Lempira y Ucotepeque.

Región VI(Norte): Atlántida, Colón e Islas de Bahía.

Región VII(Oriental): Gracias a Dios y Olancho.

Los Departamentos de Islas de Bahía y Gracias a Dios no se encuestaron por su escasa población y difícil acceso. Un mapa con esta regionalización se muestra en el Anexo IV.

Considerando esta regionalización se hace un análisis acerca de los efectos de la migración interna en las estimaciones de la mortalidad por regiones.

De acuerdo a los estudios existentes sobre la mor-39/ UNICEF y CELADE. La mortalidad infantil en Honduras, Serie

OI, N. 39, Santiago de Chile, Abril de 1985.

talidad infantil y juvenil a nivel de las regiones de Salud de Honduras es posible afirmar la existencia de significativas diferencias de niveles de mortalidad, según regiones 40/. Es razonable suponer que también existan algunos diferenciales en los niveles de la mortalidad femenina adulta. Precisamente, en tre las regiones de menor mortalidad infantil-juvenil están aquellas consideradas como de atracción de migrantes (de mayor desarrollo) y entre las de mayor mortalidad infantil-juvenil se encuentran las regiones de rechazo (de menor desarrollo) 41/.

Si existieran estos diferenciales en la mortalidad adulta regional se tendría entonces un efecto de la migración interna que sobreestimaría la mortalidad femenina adulta en las regiones de atracción.

Ahora se presenta un estudio para ver si la migración es diferencial según la condición de orfandad materna. Para ello se toman las personas con madre viva al momento de la encuesta y las personas con madre muerta. Se calcula, en ambos casos, la proporción de migrantes de toda la vida y la proporción de migrantes en los últimos 5 años antes de la encuesta, por grupos de edades. Esto se hace con los datos de la EDENH II.

Todos los resultados se presentan en los cuadros IV.1 y IV.2 del Anexo IV. A continuación se muestran los porcentajes de no-huérfanos migrantes de toda la vida por edades 40/ Cuenca, L. Op. cit.

41/ DEGC, CONSUPLANE, CELADE. EDENH II 1983, Vol. 3, Migración Interna, CELADE, San Jose, Costa Rica, Abril 1986.

y lo mismo para los huérfanos.

EDAD	0-4	5-9	10-14	15-19	20-24	25 - 29
% NO HUERF.MIG.	3.53	6.15	9.23	14.55	19.74	24.33
% HUERF.MIG.	12.77	5.48	10.79	18.75	23.13	27.61
EDAD	<u> 30–34 </u>	35-39	40-44	45-49	50-54_	55-59
% NO HUERF.MIG.	23.25	25.76	25.32	24.42	25.09	22.14
% HUERF.MIG.	27.86	28.52	26.91	25.63	24.78	27.63
~	(() (A	(5	m.)m T			
EDAD	60-64	65 y +	LATOT			
% NO HUERF.MIG.	23.08	25.42	12.47			
% HUERF. MIG.	27.18	26.26	25.61			

Se observa que del total de personas que tienen su madre viva hay 12.47% que son migrantes y del total de los encuestados que tienen su madre muerta el 25.61% son migrantes. Si se toman los grupos de edades desde 15 hasta 49 años de edad, que son los que se usan generalmente en el método de orfandad materna, resulta que un 20.5% de los no-huérfanos son migrantes y entre los huérfanos este porcentaje alcanza al 26.2. Es claro entonces que hay un importante diferencial.

Como puede verse en el cuadro del Anexo IV, cuadro IV.2, no ocurre lo mismo con los migrantes de los últimos 5 años.

La diferencia en los grupos de 15 a 49 años de edad es pequeña y de signo contrario a la diferencia para la migra-

ción de toda la vida.

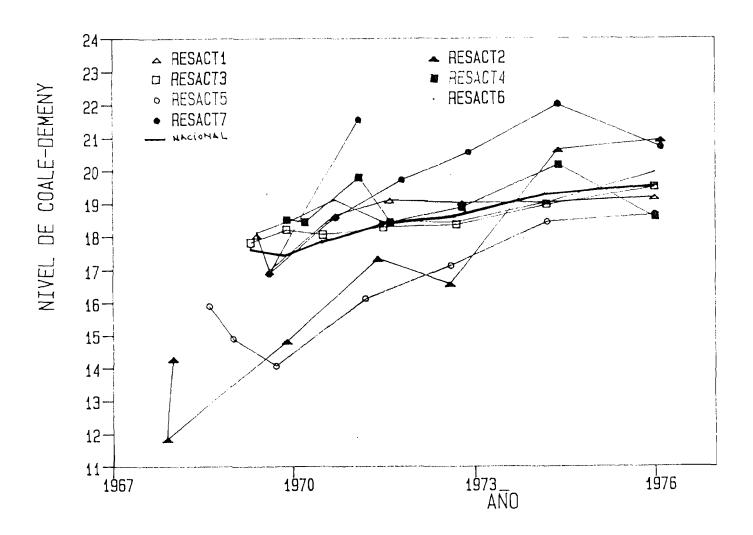
3.2 Estimación de la mortalidad femenina adulta para las regiones de salud de Honduras. Análisis de los resultados y posibles soluciones.

Como se ha visto en los capítulos anteriores, por diversas razones, las estimaciones que provienen de los en - cuestados más jóvenes y las de aquellos más viejos son poco confiables. En general, subestiman la mortalidad. Por ello se considera sólo los grupos de edades desde 15 a 49 años y para facilitar los cálculos se usa la variante de Hill-Trussell, a nivel regional.

Una de las conclusiones en el capítulo II es que en las tablas de vida modelo de Coale y Demeny es la familia Oeste la que mejor representa el patrón de mortalidad por eda des de las mujeres adultas de Honduras, en el período en estudio. Se supone que esto sigue siendo válido para cada una de las regiones y se usa, en consecuencia, la familia Oeste, para estimar la mortalidad femenina adulta a nivel nacional y regional.

Se aplica el método a nivel nacional, para tener es tas estimaciones como referencia y a nivel regional, según región de residencia actual, región de residencia hace 5 años y región de nacimiento del encuestado. Para estimar el tiempo se

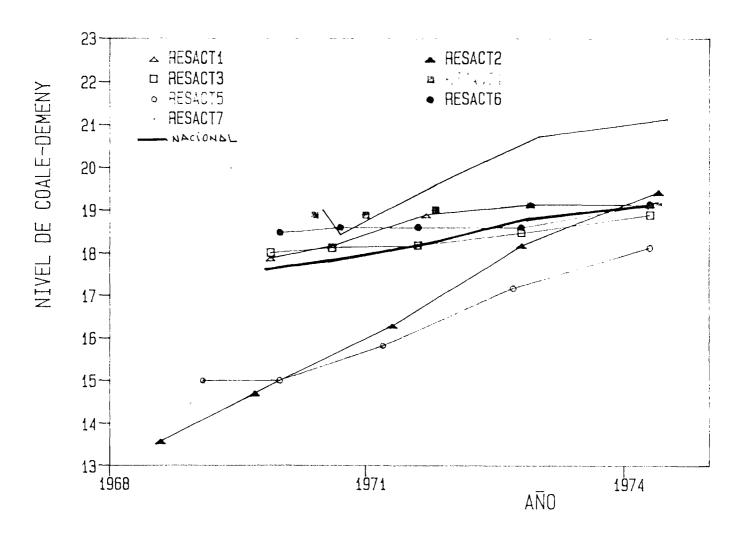
usa el método de Brass-Bamgboye, porque para los objetivos de este capítulo no es relevante la forma de cálculo del tiempo, pero además porque cuando se estimó el promedio aritmético de la fecha de fallecimiento de las madres, los resultados a este nivel de desagregación muestran una gran incoherencia.


Con los resultados a nivel nacional y los que corres ponden a las estimaciones de mortalidad para las regiones según la región de residencia actual de los encuestados, se ha construído el gráfico 10.

En las regiones I y III, a pesar de las irregularidades en las estimaciones que provienen de los dos grupos de mayor edad, se observa una buena tendencia.(Gráfico 10). No es así en las demás regiones.

Eliminando las fluctuaciones que se suponen son ale $\underline{\underline{a}}$ torias, se presenta el gráfico 11 con promedios móviles, que permite observar mejor las tendencias y los diferenciales.

GRAFICO 10


EDENH II. Niveles de mortalidad femenina adulta, en la familia Oeste, para las 7 regiones y total del país, según estimaciones con el método de or fandad materna. (Residencia actual del encuestado).

Fuente: Anexo IV, Cuadro IV.3.

GRAFICO 11

EDENH II. Niveles de mortalidad femenina adulta, en la familia Oeste, para las 7 regiones y total del país, con promedios móviles de las estimaciones con el método de orfandad materna (Residencia actual del encuestado).

Fuente: Anexo IV, Cuadro IV. 3.

Al suavizar con promedios móviles, también se puede ver que, además de las regiones I y III, hay una buena tendencia en las regiones IV y VI.

Diferente es para las demás. No es posible aceptar un descenso de la mortalidad tan grande, que fluctúa entre 5 y 10 niveles en las tablas modelo de vida de Coale y Demeny, o sea, aumentos en la esperanza de vida al nacer (é), que están entre 12.5 y 25 años, según el caso, en un período de tiempo me nor a 8 años.

Para las regiones I, III, IV y VI los resultados obtenidos para 1970-1975 son muy coherentes. Esto se confirma comparando los niveles de Coale y Demeny de estas cuatro regiones con el nivel respectivo del total del país (ver Gráfico 10 y 11). De estas cuatro regiones la que tiene menor mortalidad adulta femenina es la región cuarta, seguida de las regiones I, VI y III, en el mismo orden. Un hecho que se observa es la relativamente alta mortalidad con que aparecen las regiones I y III y la baja mortalidad en la región VII. Puesto que se esperaba una mortalidad relativamente menor en las regiones I y III que tienenun mayor desarrollo.

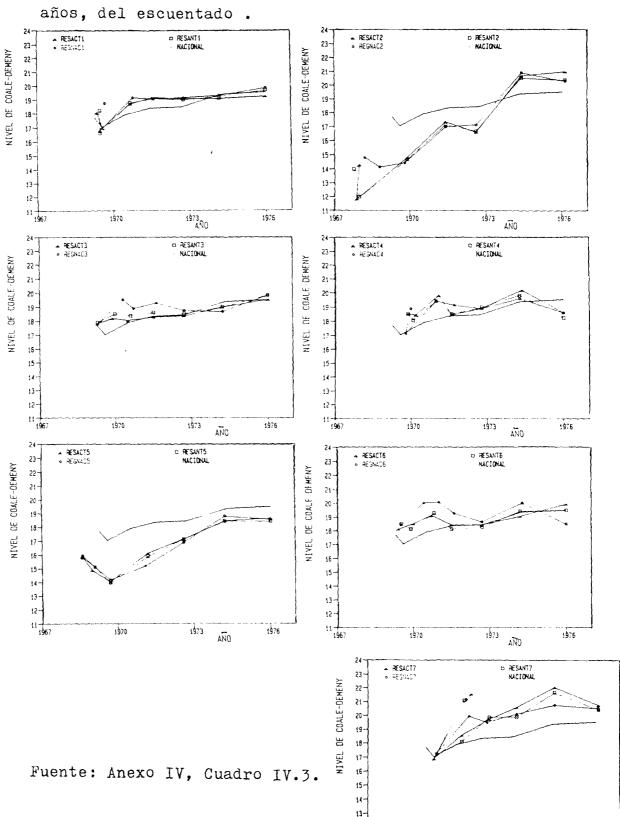
Como se ha dicho, uno de los supuestos de este método es que la población en estudio es cerrada y además se con cluyó en una sección anterior que la migración puede afectar de dos maneras a las estimaciones de mortalidad regional. Una

;

es por la mortalidad diferencial según las regiones y la otra es porque la migración interregional es diferencial según la condición de orfandad.

Estos hechos deben tenerse en cuenta cuando se est \underline{u} dia la mortalidad a nivel regional con el método de orfandad materna.

De acuerdo al análisis de la migración interna que se hizo con los resultados de la EDENH II, las regiones I,III y VI son de atracción, mientras que las demás son regiones de expulsión 42/.

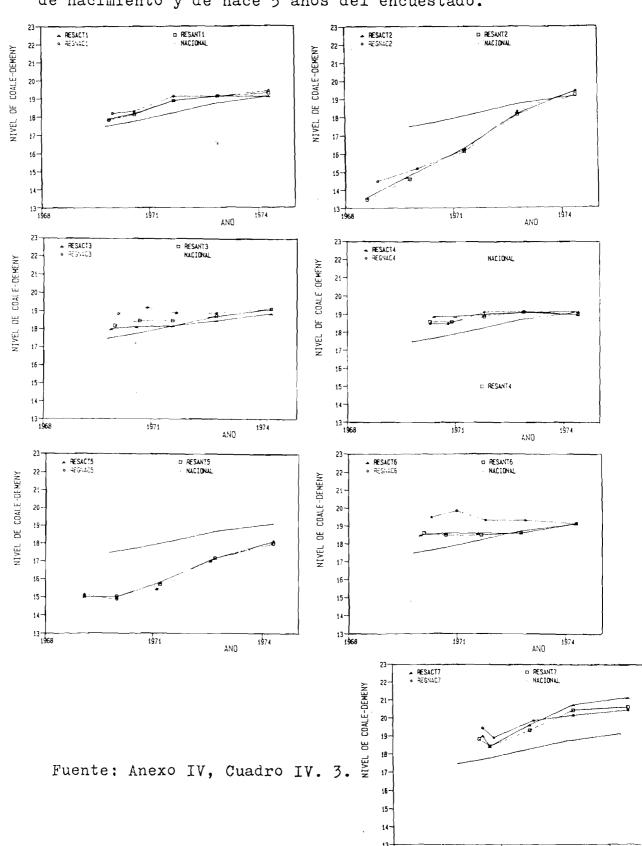

Con el objeto de buscar algunas posibles soluciones para eliminar en parte los efectos de la migración interna se hacen estimaciones con el lugar de nacimiento del encuestado, o sea, suponiendo que todas las madres de los migrantes huérfanos al momento de la encuesta murieron en la región de nacimiento del escuestado.

Como este supuesto es extremo se usa también la región de residencia hace 5 años del encuestado, para estimar la mortalidad femenina adulta, asumiendo que esta podría ser una estimación intermedia entre las dos anteriores.

Los resultados de las tres estimaciones se muestran en los gráficos 12 y 13.

42/ DGEC,..., Migración Interna,... Op. cit.

EDENH II. Niveles de mortalidad femenina adulta, en la familia Oeste, para cada una de las regiones, según región de residencia actual, de na cimiento y de hace 5 años, del escuentado .



15-

1973

1975

EDENH II. Niveles de mortalidad femenina adulta, en la familia Oeste, con promedios móviles, para cada <u>u</u> na de las regiones, según región de residencia actual, de nacimiento y de hace 5 años del encuestado.

Al observar los gráficos 12 y 13, para cada una de las regiones, se puede concluír que:

a) En las regiones I,III y VI, todas de atracción, las estima ciones usando la región de nacimiento del informante dan nive les en las tablas de vida modelo de Coale y Demeny mayores que con las estimaciones obtenidas a partir de la región de residencia actual. Esto es razonable porque, en este caso, se espera que la mortalidad sea sobreestimada con el método usado como se hace habitualmente.

Probablemente aquí se esté manifestando el doble efec to de la migración interna en las estimaciones de mortalidad.

- b) En las demás regiones, que son de expulsión, no hay dife rencias dignas de considerarse; salvo en la Región VII que mues
 tra una diferencia entre las estimaciones con región de nacimien
 to y región de residencia actual de relativa importancia en los
 primeros cuatro grupos de edades de los informantes (grupos más
 jóvenes).
- c) En las regiones II y V (de expulsión) se mantiene el mismo problema señalado antes,o sea, presentan un descenso muy grande de la mortalidad en muy poco tiempo.
- d) No hay diferencias importantes entre las estimaciones con la región de residencia actual y la región de residencia hace 5 años del encuestado, con la sola excepción de la región 3.

Las diferencias que puedan presentarse entre las estimaciones derivadas con la región de residencia actual y la región de nacimiento dependen, entre otros factores, del volumen de la migración neta, de los cambios que se hayan da do en los flujos migratorios, de si el hijo emigró con su ma dre o lo hizo sólo.

También depende del diferencial de mortalidad entre la región de nacimiento (de origen) y la de residencia actual (de destino).

Los resultados muestran diferencias mayores en las regiones de atracción que en las de expulsión. Esto se esperaba, porque en el primer caso se estarían manifestando los dos efectos de la migración interna, mientras que en las zonas de expulsión (menos desarrolladas) se manifestaría sólo el efecto de la orfandad materna.

Cuando se considera la región de residencia actual se asume que todas las madres que murieron lo hicieron en la región de residencia actual del hijo encuestado y en el otro extremo, si se estima con la región de nacimiento se está su poniendo que todas las madres que murieron lo hicieron en la región donde nació el hijo entrevistado, o sea, que esa madre no emigró desde que nació ese hijo y si lo hizo retornó y murió en esa región. En la realidad, la madre pudo morir en una de estas regiones, o en cualquiera otra.

Por ello es que podría pensarse en estimar la morta lidad regional utilizando el lugar de residencia de hace 5 años, como una posible solución intermedia.

En el caso de Honduras los resultados muestran que no hay diferencias, prácticamente, entre los resultados con región de residencia actual y de residencia hace 5 años, por lo que ésta no sería una solución.

Otra posible solución sería tomar un promedio entre las estimaciones a partir de la región de nacimiento y de la de residencia actual del encuestado.

Si algún país tuviera especial interés en hacer un análisis de la mortalidad femenina adulta por áreas geográficas una solución más satisfactoria sería preguntar en la respectiva encuesta por el lugar de fallecimiento de la madre.

En resumen, se puede concluír que las estimaciones de mortalidad femenina adulta por áreas geográficas están afectadas por la migración interna, ya que existe mortalidad diferencial según las regiones y además la migración interregional es diferencial según la orfandad materna. Sin embargo, si se tiene en cuenta este hecho se encuentran soluciones, como las propuestas aquí, que permiten obtener estimaciones con menores errores.

A continuación se muestran estimaciones de la mortalidad femenina adulta por regiones tomando distintos promedios. Se considera el período 1970-1975, pues a él corresponden las estimaciones disponibles.

	1972.5 <u>a</u> /			1970-1975 <u>b</u> /			
Región	Resact	Resant	Regnac	Resact	Resant	 Regnac	
I (*)	19.0	19.0	19.2	18.5	18.5	18.7	
II	17.6	17.6	17.8	17.4	17.2	17.3	
III(*)	18.3	18.6	18.9	18.3	18.6	19.0	
IV	19.0	19.0	19.1	19.0	18.9	18.8	
V	17.0	17.0	17.0	16.4	16.4	16.3	
VI(*)	18.6.	18.6	19.3	18.7	18.6	19.6	
VII	20.0	20.0	20.3	19.9	19.6	19.8	

a/ Se obtuvo observando directamente en el gráfico 13 con promedios móviles.

b/ Se calculó haciendo un promedio de los niveles de Coale y Demeny que corresponden a fechas entre 1970 y 1975, to mados del Anexo IV.3.

^(∗) Son las regiones de atracción.

CONCLUSIONES

Como se ha dicho en varios trabajos y ratificado en éste, el método de orfandad materna es de gran utilidad, en la estimación de la mortalidad femenina adulta en países que no tienen estadísticas o en los que ellas son deficientes. En varios países, particularmente en Africa y América Latina, las estimaciones existentes de mortalidad adulta se basan en esta metodología.

Su uso cada vez más generalizado, la necesidad de tener mejores estimaciones y su propio desarrollo plantean a los demógrafos nuevos problemas en la aplicación del método de orfandad materna.

En este trabajo se hace referencia sólo a tres de los más importantes aspectos que deben ser considerados en el uso del método de orfandad materna.

En la primera parte se estudia el efecto del modelo de mortalidad que se usa para estimar los niveles de mortali-dad correspondientes a cada valor de 1(25+N)/1(25). Se concl<u>u</u> ye que el modelo de mortalidad usado afecta las estimaciones , tanto en las tendencias como en los niveles. La subestimación de la mortalidad proveniente de los hijos informantes de mayor edad es menor cuando se usa un modelo más representativo del patrón de mortalidad de la población en estudio. Sin embargo , aunque el propósito no es analizar la información básica, en

el caso de Honduras, se puede apreciar que en parte esta subes timación proviene, posiblemente, de errores de declaración en la edad y/o de su condición de orfandad. Por otro lado, queda de manifiesto que hay una subestimación de la mortalidad estimada con la información procedente de los hijos más jóvenes, atribuí da por varios autores al fenómeno de adopción. El análisis realizado muestra la importancia que tiene la escogencia del modelo que se utilice en la aplicación del método y la necesidad, por lo tanto, de utilizar la mayor cantidad de información disponible sobre la mortalidad de la población en estudio para de terminar el más adecuado. Después de varias pruebas se resolvió que en Honduras es la familia Oeste la que mejor representa el patrón de mortalidad de las mujeres adultas, salvo para las eda des entre 70 y 80 años, en que hay un alejamiento.

Otro tema estudiado es el de la determinación del momento al que corresponden las estimaciones de mortalidad femenina adulta. Hay varias conclusiones que se pueden señalar.

En el método propuesto por Brass-Bamgboye se aprecia que a medida que aumenta la exposición al riesgo ubica las estimaciones de mortalidad más hacia el pasado, pero cada vez se hace menor el tiempo que separa una estimación de la que proviene del grupo de hijos informantes que le sigue. Lo mismo sucede cuando el ni vel de mortalidad de la población en estudio se aleja de la Stan dard utilizada en la obtención de la fórmula.

La simplificación propuesta por Brass acentúa las limitaciones ya señaladas para el método de Brass-Bamgboye, so bre todo en poblaciones que no tienen tan alta mortalidad, po siblemente debido a la standard que él usa para obtener su for ma simplificada.

El promedio y la mediana de la fecha de fallecimien to de las madres presentan una tendencia muy coherente, pero al alejar las estimaciones en el tiempo podrían estar subestimando de manera importante la mortalidad femenina adulta en el pasado. Esto es más acentuado en el promedio, ya que la mediana se ubica en un momento más cercano a la encuesta. Además, por las características de la distribución de las muertes de las madres no hay razones fuertes para suponer que estas mediadas de tendencia central sean representativas de lo que sucede en la realidad.

Esta incertidumbre hace pensar que parecen más acep tables las soluciones propuestas usando dos fuentes de datos, ya que entonces no se plantea el problema de determinar el tiem po T al que corresponden las estimaciones de mortalidad, sino que en ese caso queda determinado el período de referencia. Aquí se usó la proposición de Zlotnik-Hill y la de Preston. Am bas dan resultados símilares, pero la de Preston tiene la ventaja de que no es necesario que ambas encuestas estén distan - ciadas en un múltiplo de 5 años. Sin embargo, se requiere que

haya coherencia entre ambas fuentes de información, lo que <u>ge</u> neralmente no ocurre. De ahí que la proposición de los profes<u>o</u> res J. Chackiel y H. Orellana, que utiliza la información del año de fallecimiento de las madres, para hacer estimaciones <u>pa</u> ra períodos recientes, como si se tratara de dos fuentes, parece la más adecuada. Aunque tiene algunas limitaciones, que ya se han señalado, se utiliza la información de una sola fuente, no presentándose así los problemas de coherencia que se tienen si se usan dos fuentes.

Por otra parte, como el método se ha estado utilizando para subpoblaciones, se hace un análisis de su aplicación a nivel regional. Se comprueba que efectivamente la migración interregional es diferencial según la condición de orfandad ma terna, esto es, que en Honduras migran más los huérfanos que los no-huérfanos. Además, como las regiones de expulsión tienen mayo mortalidad que las de atracción, hay un doble efecto de la mi gración en las estimaciones de mortalidad femenina adulta en las regiones de atracción, que da como resultado una sobresti mación de la mortalidad. Al aplicar el método de orfandad materna a nivel de subpoblaciones debe tenerse en cuenta el efec to que pueda tener la migración interna. Como las estimaciones que se obtienen con el lugar de residencia actual y con el lugar de nacimiento del encuestado son las extremas, se pensó que una estimación intermedia podría ser satisfactoria. Para ello se hicieron las estimaciones utilizando la región de residencia de hace 5 años, pero éstas no difieren de las obtenidas con la residencia actual. Un promedio simple entre las estimaciones hechas con la residencia actual y la región de na cimiento del encuestado es una solución satisfactoria.

Si se tiene especial interés y se desea tener mejores estimaciones, podría recolectarse la información acerca del lugar de fallecimiento de las madres.

Finalmente, hay que insistir en la necesidad de seguir profundizando en el estudio de los nuevos problemas que
se originan con el desarrollo es este metodo y en su aplicación,
tratando de darles soluciones satisfactorias.

BIBLIOGRAFIA

Arévalo, Jorge y otros. Encuesta Demográfica Nacional del Paraguay- EDEN-PAR 77- San Jose, Costa Rica. CELADE, Serie A, N.º 1042, 1981.

Brass, William. Advances in methods for estimating fertility and mortality limited and defective data. University of London, Londres, Inglaterra, 1985.

Brass, W. y Bamgboye. E.A. The Time Location of Reports of Survivorship: Estimates for Maternal and Paternal Orphanhood and Ever-Widowed. Working Paper N.º 81-1, London School of Hygiene and Tropical Medicine, Center for Population Studies, 1981.

Brass, W. Métodos para estimar la fecundidad y la mortalidad en poblaciones con datos limitados. Santiago, Chile. CELADE, 1974.

Brass, W. <u>Cuatro lecciones de William Brass</u> CELADE, Serie D. N.º 191, Santiago, Chile, 1977.

Camisa, Z. y Rincón M. Honduras: proyecciones de población. Vol. I. San José, Costa Rica. CELADE, 1981.

Ceballos, Zenón. República Dominicana. <u>La mortalidad según regiones de planificación</u>. <u>Período 1960-1980</u>. Tesis de grado. CELADE, Santiago, Chile, 1984.

Coa, R. Análisis de la mortalidad infantil-juvenil y adulta.

Construcción de tablas de vida por sexo y áreas rural y urbana.

Período 1962-1975. Trabajo de investigación, CELADE, Santiago,
Chile, 1985.

Cuenca, L. Análisis de la mortalidad por sexo y edad, según las regiones de salud de Honduras. 1970-1980. Trabajo de investigación, CELADE, Santiago, Chile, 1985.

Coale, A.; Demeny, P. Regional model life tables and stable populations. New Jersey, U.S.A. Princeton University Press, 1986.

Coale, K.; Trussell, J. "Model fertility schedules: variations in the age structure of childbearing in human population". Population Index, Vol. 40, N°2, Abril de 1974.

Chackiel, J.; Orellana, J. "Adult female mortality trends from retrospective questions about maternal orphanhood included in censuses and surveys". En: <u>International Population Conference</u>. Florencia, Italia, 1985.

D.G.E.C., CONSUPLANE y CELADE, EDENH II 1983, Informe General, CELADE, Vol. 2, Serie A. 1047/II, San José, Costa Rica, Septiembre de 1985.

D.G.E.C., CONSUPLANE y CELADE, EDENH II 1983, Migración Interna

CELADE, Vol. 3, Serie A. 1047/III, San José, Costa Rica, Abril de 1986.

Feeney, G. Estimación de la mortalidad infantil y de la niñez en condiciones de mortalidad variable. CELADE, Serie D, Nº 1034, San José, Costa Rica, 1983.

Hill, K. Análisis de preguntas restrospectivas EDENH, Fascículo VII CELADE, Serie A, Nº129, San José, Costa Rica, 1976.

Hill, K.; Trussell, J. "Further developments in indirect mortality estimation" En: <u>Population Studies</u>, Vol. XXXI, Nº 2, Julio de 1977.

Hill, K. "El uso de información sobre orfandad para estimar la supervivencia en edades adultas". En: Notas de Población, N. 15, CELADE, San José, Costa Rica, Diciembre de 1977.

Naciones Unidas, Manual X. <u>Técnicas indirectas de estimación de</u> mográfica. New York, 1986.

Ortega A. y Rincón M. Mortalidad EDENH. Fascículo IV, CELADE, Serie A, 129, San José, Costa Rica, 1975.

Palloni, A. Masagli, M. y Marcotte, J. "Estimating Adult Mortality with Maternal Orphanhood Data: Analysis of Sensitivity of the Techniques". En: <u>Population Studies</u>, Number 2, July 1984, Londres, Inglaterra.

Preston, S. y Chen, N. <u>Two-Census Orphanhood Methods for Estimating Adult Mortality, with Applications to Latin América</u>. University of Pennsilvania, United Nations Population Division, Noviembre de 1984.

Timaeus, Ian. An assessment of Methods for Estimating adult mortality from two sets of data on maternal orphanhood. London School of Hygiene and Tropical Medicine, Center for Population Studies, 1985.

Wonnacott, T. y Wonnacott, R. <u>Introducción a la estadística</u>. México. Editorial Limusa. 1979.

ANEXU I.

TABLAS ABREVIADAS DE MORTALIDAD FEMENINA

DE HONDURAS.

Cuadro I.1 HONDURAS: TABLA ABREVIADA DE MORTALIDAD, HOMBRES-MUJERES, 1949 - 1951

Grupos de edades	n ^m x	n ^Q x	L _x	d _X	n ^L x	T _x	e _x	P_{χ}
					bres			
0	0.19853	0.175608	100 000	17 561	88 410	3 990 104	39,90	0.78761
1-4	0.04249	0.140710	82 439	11 600	305 396	3 901 694	47.33	0.88301
5-9	0.00742	0.036473	70 839	2 584	347 735	3 596 298	50.77	0.97226
10-14	0.00377	0.018687	68 255	1 275	338 088	3 248 563	47.59	0.97855
15-19	0.00491	0.024275	66 980	1 626	330 835	2 910 475	43.45	0.97070
20-24	0.00700	0.034442	65 354	2 251	321 142	2 579 640	39.47	0.96104
25-29	0.00891	0.043648	63 103	2 754	308 630	2 258 498	35.79	0.95159
30-34	0.01095	0.053392	60 349	3 222	293 690	1 949 868	32.31	0.94449
35-39	0.01187	0.057756	57 127	3 299	277 388	1 656 178	28.99	0.93741
40-44	0.01399	0.067742	53 828	3 646	260 025	1 378 790	25.61	0.92583
45-49	0.01685	0.081060	50 182	4 068	240 740	1 118 765	22.29	0.90974
50-54	0.02104	0.100254	46 114	4 623	219 012	878 025	19.04	0.88063
55-59	0.03013	0.140632	41 491	5 835	192 868	659 013	15,88	0.83422
6C-64	0.04302	0.195030	35 656	6 354	160 895	466 145	13.07	0.77625
65-69	0.05436	0.259421	28 702	7 446	104 895	305 250	10.64	0.70917
70-74	0.07979	0.333234	21 256	7 083	83 572	180 355	8.43	0.63578
75-79	0.10361	0.410679	14 173	5 821	56 312	91 783	6. <i>i</i> .8	0.38647
80 y más	0.1000	1.000000	8 352	8 352	35 471	35 471	4.25	0.700.7
				мчј	eres			
С	0.19303	0.171217	., 100 000	17 122	88 699	4 237 046	42.37	0.79641
1-4	0.03743	0.171217		10 478		4 148 347		0.89452
1-4 5-9	0.00650	0.032018	82 878 30 100	2 318	309 508 354 005		50.05 53.02	0.69452
10-14	0.00333	0.016523	72 400 70 082	1 158	356 205 347 515	3 838 839 3 482 634	49.69	0.98116
15-19	0.00428	0.010323	70 082 68 924	1 461	340 968	3 135 119	45.49	0.92116
20-24	0.00608	0.029978	67 463	2 022	332 260	2 794 151	41.42	0.96604
25-29	0.000775	0.038067	65 441	2 491	320 978	2 461 891	37.62	0.95776
30-34	0.00952	0.046571	62 950	2 932	307 420	2 140 913	34.01	0.95156
35-39	0.01032	0.050392	60 018	3 024	292 530	1 833 493	30.55	0.94536
40-44	0.01216	0.059128	56 994	3 370	276 545	1 540 963	27.04	0.93525
45-49	0.01463	0.070738	53 624	3 793	258 638	1 264 418	23.58	0.92120
50-54	0.01403	0.007469	49 831	4 359	238 258	1 005 780	20.18	0.92120
55-59	0.02627	0.007409	45 472	5 625	213 298	767 522	16.88	0.85303
60-64	0.03783	0.173521	39 847	6 914	181 950	554 224	13.91	0.79966
65-69	0.05245	0.173321	32 933	7 667	145 498	372 274	11.30	0.73675
70-74	0.03243	0.302926	25 266	7 654	107 195	226 776	8.98	0,75675
75-79	0.09355	0.379048	23 200 17 612	6 676	71 370	119 581	6.79	0.40317
80 y más	○◆○ランノン	1,000000	10 936	10 936	48 211	48 211	4.41	0.70317

Fuente: Camisa, Z. y Rincón M. Honduras: proyecciones de población, Vol. 1. San José, Costa Rica, CELADE, 1981.

a/ 5^Pb
b/ 5^PO-4
c/ 5^P75 y más

Cuadro I.2 HONDURAS: TABLA ABREVIADA DE MORTALIDAD, HOMBRES-MUJERES, 1960 - 1962

Grupos de edades	n ^m x	n ^q x	L _x	n ^d x	n ^L x	T _x	e _x	P _{x,x}
				Ношь	res			
_1	0.16471	0.148120	100 000	14 812	89 928	4 544 463	45.44	0.82512
1-4	0.02901	0.101286	85 188	8 628	322 633	4 454 535	52,29	0.91465
5-9	0.00577	0.028469	76 560	2 180	377 350	4 131 902	53.97	0.97829
10-14	0.00297	0.014749	74 380	1 097	<i>369</i> 158	3 754 552	50.48	0.98303
15-19	0.00388	0.019227	73 283	1, 409	362 893	3 385 394	46.20	0.97675
20-24	0.00554	0.027347	71 874	1 966	354 455	3 022 501	42.05	0.96884
25-29	0.00713	0.035070	69 908	2 452	343 410	2 668 046	38.17	0.96100
30-34	0.00879	0.043070	67 456	2 905	330 018	2 324 636	34.46	0.95503
35-39	0.00960	0.046952	64 551	3 031	315 178	1 994 618	30.90	0.94891
40-44	0.01138	0.055431	61 520	3 410	299 075	1 679 440	27.30	0.93879
45-49	0.01390	0.067319	58 110	3 912	280 770	1 380 365	23.75	0.92467
50-54	0.01747	0.083921	54 198	4 548	259 620	1 099 595	20.29	0.89887
55-59	0.02542	0.119920	49 650	5 954	233 365	839 975	16,92	0.85603
60-64	0.03730	0.171293	43 696	7 485	199 768	606 610	13.88	0.80077
65-69	0.05249	0.232949	36 211	8 435	159 968	406 842	11.23	0.73393
70-74	0.07293	0.309244	27 776	8 590	117 405	246 874	8.89	0.65800
75–79	0.09679	0.389402	19 186	7 471	77 253	129 469	6.75	0.40331
80 y más	0.19109	1.000000	11 715	11 715	52 216	52 216	4.46	0.10557
			Į	M u j e	res			
_	0.41/45		-				10.07	
- 1	0.14612	0.132913	100 000	13 291	90 962	4 883 437	48.83	0.84077
1-4	0.02720	0.095646	86 709	8 293	329 421	4 792 475	55.27	0.92145
5-9	0.00487	0.024077	78 416	1 888	387 360	4 463 054	56.92	0.98168
10-14	0.00250	0.012426	76 528	951	380 263	4 075 694	53.26	0.98580
15-19	0.00322	0.015979	75 577	1 208	374 865	3 695 431	48.90	0.98068
20-24	0.00459	0.022706	74 369	1 659	367 623	3 320 566	44.65	0.97420
25-29	0.00587	0,028956	72 680	2 105	358 136	2 952 943	40.63	0.96776
30-34	0.00724	0.035601	70 575	2 513	346 593	2 594 805	36.77	0.96278
35-39	0.00792	0.038886	68 062	2 647	333 693	2 248 212	33.03	0.95770
40-44	0.00937	0.045851	65 415	2 999	319 578	1 914 519	29.27	0.94942
45-49	0.01140	0.055525	62 416	3 466	303 415	1 594 941	25.56	0.93763
50-54	0.01439	0.069613	58 950	4 104	284 490	1 291 526	21.91	0.91562
55-59	0.02104	0.100253	54 846	5 498	260 485	1 007 036	18.36	0.87933
60-64	0.03076	0.143365	49 348	7 075	229 053	746 551	15.13	0.83125
6569	0.04384	0.198379	42 273	8 386	190 400	517 498	12.24	0.77134
70-64	0.06122	0.266440	33 887	9 029	146 863	327 098	9.65	0.70065
75–79	0.08300	0.344193	24 858	8 556	102 900	180 235	7.25	0.42908
80 y más	0.15581	1,000000	16 302	16 302	77 335	77 335	4.74	

Fuente: Camisa, Z.; Rincon M. Op. cit.

a/ 5^P b
b/ 5^P 0-4
c/ 5^P 75 y más

Cuadro I.3

HONDURAS: TABLA ABREVIADA DE MORTALIDAD, HOMBRES-MUJERES, 1973 - 1975

Grupos de edades	n ^m x	nqx	ℓ_{χ}	n ^d x	n ^L x	T _x	e _x	$P_{x,x}$
				Ношь	r e s			
- 1	0.13792	0.125777	,100 000	12 578	91 195	5 337 871	53.38	0.85715
1-4	0.01841	0.067037	87 422	5 861	337 380	5 246 676	60.02	0.94248
5-9	0.00384	0.019030	81 561	1 552	403 925	4 909 296	60.19	0.98557
10-14	0.00196	0.009755	80 009	780	398 095	4 505 371	56.31	0.98880
15-19	0.00255	0.012673	79 229	1 004	393 635	4 107 276	51.84	0.98468
20-24	0.00363	0.017997	78 225	1 408	387 605	3 713 641	47.47	0.97964
25-29	0.00460	0.022755	76 817	1 748	379 715	3 326 036	43.30	0.97466
30-34	0.00567	0.027981	75 069	2 101	370 093	2 946 321	39.25	0.97077
35-39	0.00619	0.030512	72 968	2 226	359 275	2 576 228	35.31	0.96679
40-44	0.00732	0.035988	70 742	2 546	347 345	2 216 953	31.34	0.96032
45-49	0.00888	0.043503	68 196	2 967	333 563	1 869 608	27.42	0.95108
50-54	0.01120	0.054577	65 229	3 560	317 245	1 536 045	23.55	0.93262
55 - 59	0.01682	0.080919	61 669	4 990	295 870	1 218 800	19.76	0.89979
60-64	0.02571	0.121209	56 679	6 870	266 220	922 930	16.28	0.85720
65-69	0.03637	0.167374	49 809	8 337	228 2 03	656 710	13.18	0.80266
70-74	0.05258	0.233302	41 472	9 676	183 170	428 507	10.33	0.73218
75-79	0.07394	. 0.312825	31 796	9 947	134 113	245 337	7.72	0.45335
80 y más	0.17000	1,000000	21 849	21 849	111 224	111 224	5.09	
			Ţ,	Muje	r e s			
- 1	0.09249	0.086866	100 000	86 876	93 919	5 692 871	56.93	0.89473
1-4	0.01680	0.061570	91 313	5 622	353 446	5 598 952	61.21	0.94987
5-9	0.00331	0.016422	85 69 1	1 407	424 938	5 245 506	61.21	0.98747
10-14	0.00172	0.008564	84 284	722	419 615	4 820 568	57.19	0.99020
15-19	0.00222	0.011041	83 562	923	415 503	4 400 953	52.67	0.98655
20-24	0.00320	0.015881	82 639	1 312	409 915	3 985 450	48.23	0,98186
25-29	0.00413	0.020454	81 327	1 663	402 478	3 575 535	43.96 ·	0.97705
30-34	0.00516	0.025494	79 664	2 031	3 93 243	3 173 057	39.83	0.97318
35-39	0.00571	0.028176	77 633	2 187	382 698	2 779 814	35.81	0.96907
40-44	0.00686	0.033763	75 446	2 547	370 863	2 397 116	31.77.	0.96235
45-49	0,00850	0.041676	72 899	3 038	356 9∞	2 026 253	27.80	0.95268
50-54	0.01091	0.053200	69 861	3 717	340 013	1 669 353	23.90	0.93539
55-59	0.01590	0.076655	66 144	5 070	318 045	1 329 340	20.10	0.90399
60-64	0.02476	0.116983	61 074	7 145	287 508	1 011 295	16.56	0.86171
65-69	0.03520	0.162419	53 929	8 759	247 748	723 767	13.42	0.80900
7074	0.05050	0.225120	45 170	10 169	200 428	476 039	10.54	0.73959
75-79	0,07200	0.305931	35 001	10 708	148 235	275 611	7.87	0.46216
80 y más	0,15722	1,000000	24 293	24 293	127 376	127 376	5.24 .	

<u>a</u>/ 5^pb

Fuente: Camisa, Z.; Rincon M. Op. cit.

b/ 5P0-4

Cuadro I. 4

EDENH II. TABLA DE VIDA FEMBNINA 1981-83 SIN CORRECCION EN LAS DEFUNCIONES REGISTRADAS CON AJUSTE GRAFICO EN LAS 5MX

Eda-	d N	М(х,п)	q(x,n)	l(x)	D(x,n) L(x,n)	T(x)	e(x)	P(x,n)
								Pb	:0.91529
0	1	0.07916	0.07486	100000	7486	94570	6367566	63,68	0.97623
1	4	0.00730	0.02863	92514	2649	363077	6272997	67.81	
5	5	0.00229	0.01139	89865	1024	446768	5909919	65.76	0.9912
10	5	0.00123	0.00613	88842	545	442847	5463152	61.49	0.9931
15	5	0.00154	0.00767	88297	677	439791	5020305	56.86	0.9915
20	5	0.00185	0.00921	87619	807	436080	4580514	52.28	0.9898
2.5	5	0.00225	0.01119	86812	972	431633	4144435	47.74	0.9877
30	5	0.00270	0.01342	85841	1152	426325	3712802	43.25	0.9851
35	5	0.00330	0.01638	84689	1387	419979	3286477	38.81	0.9814
10	5	0.00419	0.02075	83302	1728	412190	2866498	34.41	0.9749
45	5	0.00598	0.02944	81574	2402	401865	2454308	30.09	0.9642
50	5	0.00861	0.04216	79172	3338	387515	2052443	25.92	0.9487
55	5	0.01253	0.06073	75834	4606	367657	1664928	21.95	0.9248
50	5	0.01896	0.09050	71228	6446	340027	1297271	18.21	0.8894
35	5	0.02841	0.13264	64783	8593	302431	957244	14.78	0.8365
70	5	0.04421	0.19903	56190	11184	252990	654813	11.65	0.7598
75	5	0.06825	0.29151	45006	13!20	192231	401823	8.93	
80	W	0.15213	1.00000	31886	31886	209593	209593	6.57	
							Р (75 ,w)	: .5216

Fuente: DGEC, CONSUPLANE, ... Informe general, Op. cit.

Cuadro I. 5

HONDURAS, TABUA DE VIDA PARA LA POBLACION FEMENINA BASADA EN LA INFORMACION OBTENIDA EN LA EDENH, AÑOS 1971-1972

Intervalo de edades	Tasas de mortali dad ajustadas	Probabi- lidades de muerte	Sobrevi- vientes a la edad x	Defunciones entre x, x • n	Tiempo vi- vido entre xyx+n	Tiempo vi- vido entre x y s	Esperanza de vida # la edad x
	n ^m x	$n^{q}x$	l _x	$_{n}d_{x}$	L	T_{x}	e _x
Dras							
0.6	1.51446	0.02839	100 000	2 839	1 875	5 553 386	55.53
7 - 29	0,29957	0.01865	97 161	1.812	6.049	5 551 511	57,14
30 181	0.06123	0.02511	95 349	2 394	39 109	5 545 462	58,16
182 - 364	0.04706	0.02328	92 955	2 16 1	45 985	5 50n 353	59,24
Años							
$0 \cdot 1$	0.09900	0.09209	100 000	9 209	93 018	5 553 386	55,53
1 - 2	0.03286	0.03228	90.791	2 93 1	89 179	5.460.368	60.14
2 3	0.01964	0.01943	87.860	1.707	Bo 938	5 371 189	61.13
3 4	0,00995	0,00990	8n 153	853	85 701	5 281 251	61,34
4 5	0,00600	0,00598	85.300	510	85 035	5 198 550	60,94
5 9	0,00470	0.02324	84.790	1 971	419.362	5 113 515	60,31
10 - 11	0,00215	0.01070	82 819	1186	412 093	4 694 153	56,63
$15 \cdot 19$	0,00275	0.01366	81,933	1.119	\$(x) 909	4 282 060	52,26
20 24	0,00345	0.01711	80 814	1.383	400.870	3 875 151	47,95
25 - 29	0.00430	0,02129	79 431	1 691	393 256	3 174 281	43,74
$30 \cdot 34$	0,00500	0.02471	77 740	1.921	384 200	3 081 025	39,63
$35 \cdot 39$	0.00590	0.02910	75.819	2 206	373.898	2 696 825	35,57
40 - 44	0,00730	0.03589	73 613	2.642	361 918	2 322 927	31,56
45 - 49	0,00960	0.04695	70 971	3 332	347 083	1 961 009	27,63
$50 \cdot 54$	0.01280	0.06215	67 639	4 204	328 438	1 613 926	23,86
55 59	0,01750	0.08406	63 435	5 332	304 686	1 285 488	20,26
60 - 64	0.02500	- 0,11805	58 103	6 859	274 360	980 802	16,88
65 - 69	0.03700	0,17003	51 244	8 713	235 486	706 442	13,79
70 - 74	0,05300	0,23495	42 531	9 993	188 547	470 956	11,07
75 - 79	0.07800	0,32705	32 538	10 642	136 436	282 409	8,68
80 y más	0,15000	1,00000	21 896	21 896	145 973	145 973	6,67

Fuente: Ortega, A. y Rincón M. Op. cit.

ANEXO II

NIVELES DE MORTALIDAD FEMENINA ADULTA DE HONDURAS EN LAS CUATRO FAMILIAS DE COALE-DEMENY Y EN EL SISTEMA LOGITO DE BRASS.

 $\label{eq:CUADRO II.1}$ Honduras. Nivels correspondientes a cada l(x) de las tablas de vida femeninas de Honduras, en las cuatro familias de Coale y Demeny.

FAMILIA	N(25)	N(30)	N(35)	N(40)	N(45)	N(50)	N(55)	N(60)	N(65)	N(70)	N(75)	N(80)	Ñ	Máx. -Mín.	N(x) - N x
					-		1981–198	33							
OESTE NORTE ESTE	17.51 18.08 17.84	17.72 18.27 17.90	17.90 18.42 17.95	18.05 18.53 18.00	18.19 18.65 18.03	18.29 18.64 18.01	18.37 18.60 17.99	18.46 18.46 18.00	18.59 18.35 18.11	18.85 18.36 18.47	19.32 18.52 19.17	20.12 18.87 20.27	18.45 18.48 18.31	2.61 0.79 2.43	6.22 1.87 5.94
SUR	18.75	18.70	18.64	18.55	18.45	18.26	18.03	17.76	17.56	17.56	17.97	18.98	18.27	1.42	4.93
							1973–197	75							•
OESTE NORTE ESTE SUR	15.35 15.85 15.66 16.43	15.47 15.90 15.62 16.29	15.52 15.90 15.52 16.07	15.59 15.92 15.45 15.88	15.63 15.93 15.36 15.67	15.67 15.87 15.27 15.42	15.77 15.84 15.25 15.22	15.82 15.70 15.25 14.94	15.84 15.49 15.28 14.69	16.01 15.47 15.62 14.71	16.50 15.75 16.41 15.27	17.50 16.40 17.80 16.50	15.89 15.84 15.71 15.59	2.15 0.93 2.55 1.81	4.69 1.84 5.61 6.59
							1971–197	72							
OESTE NORTE ESTE SUR	14.64 15.13 14.95 15.67	14.80 15.21 14.94 15.58	14.93 15.29 14.91 15.45	15.04 15.34 14.88 15.28	15.08 15.35 14.79 15.07	15.05 15.23 14.63 14.76	15.04 15.08 14.50 14.44	15.04 14.89 14.44 14.12	15.13 14.76 14.55 13.97	15.27 14.73 14.89 14.00	15.74 15.00 15.66 14.55	15.56 15.51 16.91 15.66	15.19 15.13 15.00 14.88	1.92 0.78 2.47 1.70	3.96 2.34 5.09 6.87
							1960-196	62							
OESTE NORTE ESTE SUR	12.26 12.72 12.55 13.13	12.42 12.78 12.54 13.05	12.51 12.79 12.46 12.88	12.60 12.83 12.40 12.72	12.65 12.84 12.30 12.51	12.64 12.75 12.17 12.24	12.71 12.66 12.10 12.02	12.66 12.45 12.02 11.69	12.66 12.22 12.04 11.49	12.70 12.15 12.33 11.53	13.05 12.39 13.08 12.13	14.00 13.09 14.51 12.45	12.74 12.64 12.54 12.32	0.94 2.49	3.16 2.69 5.02 5.64
							1949-19	51							
OESTE NORTE ESTE SUR	9.81 10.24 10.16 10.63	9.96 10.27 10.13 10.57	10.05 10.25 10.02 10.39	10.14 10.29 9.94 10.22	10.17 10.26 9.78 9.98	10.13 10.14 9.58 9.65	10.16 10.01 9.44 9.37	10.06 9.77 9.29 9.00	10.01 9.54 9.26 8.79	10.01 9.49 9.50 8.84	10.32 9.79 10.16 9.41	11.09 10.48 11.54 10.79	10.16 10.04 9.90 9.81	0.99	2.21 3.25 5.10 7.49

Fuente: Anexo I y Tablas de vida modelo de Coale y Demeny.

Honduras. Desvíos de cada nivel respecto a su nivel promedio, correspondientes a cada l(x) de las tablas

de vida femeninas de Honduras, en las cuatro familias de Coale y Demeny

FAMILIA	ท(25)-ที	N(30)-N	N(35)-N	N(40)-N	N(45)-N	ท(50)-ที	ท(55)-ที	N(60)-N	N(65)-N	N(70)-N	N(75)-N	N(80)-Ñ
						1981–1983				- , , , , , , , , , , , , , , , , , , ,		
OESTE	-0.94	-0.73	-0.55	-0.40	-0.26	-0.16	-0.08	0.01	0.14	0.40	0.88	1.67
NORTE	-0.40	-0.21	-0.06	0.05	0.17	0.16	0.12	-0.02	-0.13	-0.12	0.04	0.39
ESTE	-0.47	-0.41	-0.36	-0.31	-0.28	-0.30	-0.32	-0.31	-0.20	0.16	0.86	1.96
SUR	0.48	0.43	0.37	0.28	0.18	-0.01	-0.24	-0.51	-0.71	-0.71	-0.30	0.71
						1973–1975						
OESTE	-0.54	-0.42	-0.37	-0.30	-0.26	-0.22	-0.12	-0.07	-0.05	0.12	0.61	1.61
NORTE	0.01	0.06	0.06	0.08	0.09	0.03	0.00	-0.14	-0.35	-0.37	-0.09	0.56
ESTE	-0.05	-0.09	-0.19	-0.26	-0.35	-0.44	-0.46	-0.46	-0.43	-0.09	0.70	2.09
SUR	0.84	0.70	0.48	0.29	0.08	-0.17	-0.37	-0.65	-0.90	-0.88	-0.32	0.91
						1971–1972						
OESTE	-0.55	-0.39	-0.26	-0.15	-0.11	-0.14	-0.15	-0.15	-0.06	0.08	0.55	1.37
NORTE	0.00	0.08	0.16	0.21	0.22	0.10	-0.05	-0.24	-0.37	-0.40	-0.13	0.38
ESTE	-0.05	-0.06	-0.09	-0.12	-0.21	-0.37	-0.50	-0.56	-0.45	-0.11	0.66	1.91
SUR	0.79	0.70	0.57	0.40	0.19	-0.12	-0.44	-0.76	-0.91	-0.88	-0.33	0.78
					:	1960–1962						
OESTE	-0.48	-0.32	-0.23	-0.14	-0.09	-0.10	-0.03	-0.08	-0.08	-0.04	0.31	1.26
NORTE	0.08	0.14	0.15	0.19	0.20	0.11	0.02	-0.19	-0.42	-0.49	-0.25	0.45
ESTE	0.01	0.00	-0.08	-0.14	-0.24	-0.37	-0.44	-0.52	-0.50	-0.21	0.54	1.97
SUR	0.81	0.73	0.56	0.40	0.19	-0.08	-0.30	-0.63	-0.83	-0.79	-0.19	0.13
					:	1949–1951						
OESTE	-0.35	-0.20	-0.11	-0.02	0.01	-0.03	0.00	-0.10	-0.15	-0.15	0.16	0.93
NORTE	0.20	0.23	0.21	0.25	0.22	0.10	-0.03	-0.27	-0.50	-0.55	-0.25	0.44
ESTE	0.26	0.23	0.12	0.04	-0.12	-0.32	-0.46	-0.61	-0.64	-0.40	0.26	1.64
SUR	0.82	0.76	0.58	0.41	0.17	-0.16	-0.44	-0.81	-1.02	-0.97	-0.37	0.98

CUADRO II. 2

Fuente: Cuadro II. 1.

CUADRO II. 3. Honduras. Niveles correspondientes a cada l(x)|l(25) de las tablas de vida femeninasde Honduras, en las cuatro familias de Coale y Demeny.

FAMILIA	N(35)	N(40)	N(45)	N(50)	N(55)	N(60)	N(65)	N(70)	N(75)	N(80)	N	Máx.	[N(x)-N
						1981-	1983			<u> </u>			
OESTE	19.62	19.60	19.59	19.51	19.44	19.37	19.39	19.63	20.13	20.97	19.73	1.60	3.33
NORTE	20.11	19.95	19.90	19.58	19.29	18.86	18.56	18.54	18.72	19.13	19.26	1.57	5.02
ESTE	18.58	18.56	18.50	18.35	18.22	18.19	18.34	18.87	19.78	20.96	18.84	2.77	6.23
SUR	18.06	17.87	17.72	17.34	16.62	16.62	16.54	16.82	17.62	18.89	17.45	2.35	5.87
						1973-	1975			۵.			
OESTE	16.28	16.29	16.24	16.19	16.32	16.32	16.25	16.43	17.09	18.32	16.57	2.13	4.51
NORTE	16.15	16.14	16.12	15.91	15.83	15.54	15.17	15.22	15.71	16.62	15.84	1.45	3.47
ESTE	14.74	14.74	14.62	14.51	14.62	14.77	14.94	15.59	16.77	18.56	15.39	4.05	9.54
SUR	14.29	14.09	13.83	13.50	13.38	13.18	13.15	13.61	14.73	16.54	14.03	3.39	7.06
						1971-	1972						
OESTE	16.28	16.20	16.03	15.75	15.59	15.47	15.55	15.69	16.31	17.32	16.02	1.85	4.09
NORTE	16.14	16.04	15.88	15.42	15.01	14.62	14.42	14.45	14.94	15.67	15.26	1.72	5.71
ESTE	14.73	14.63	14.38	14.00	13.78	13.83	14.19	14.86	16.02	17.62	14.80	3.84	8.16
SUR	14.28	13.99	13.60	13.00	12.57	12.26	12.44	12.90	14.03	15.67	13.47	3.41	8.40
						1960-	1962						
OESTE	13.78	13.74	13.57	13.35	13.36	13.11	12.99	12.99	13.52	14.80	13.52	1.81	3.61
NORTE	13.19	13.24	13.22	12.81	12.57	12.10	11.77	11.76	12.21	13.25	12.61	1.49	5.30
ESTE	11.93	11.87	11.63	11.34	11.31	11.29	11.51	12.17	13.38	15.31	12.17	4.02	8.66
SUR	11.60	11.34	10.95	10.47	10.22	9.96	9.93	10.41	11.62	13.57	11.00	3.71	8.29
						1949-	1951					•	
OESTE	11.20	11.17	10.97	10.69	10.63	10.33	10.18	10.14	10.57	11.63	10.75	1.49	3.39
NORTE	10.34	10.47	10.32	9.96	9.68	9.26	8.96	9.03	9.58	10.58	9.82	1.62	5.16
ESTE	9.22	9.12	8.79	8.40	8.28	8.23	8.43	9.06	10.17	12.20	9.19	3.97	7.97
SUR	9.04	8.73	8.23	7.65	7.36	6.98	7.12	7.68	8.87	10.86	8.25	3.88	8.98

Fuente: Anexo I y Manual X de Naciones Unidas.

CUADRO II. 4 Honduras. Desvíos de cada nivel respecto a su nivel promedio, correspondiente a cada l(x)|l(25) de las tablas de vida femeninas de Honduras, en las cuatro familias de Coale y Demeny.

FAMILIA	N(35)-Ñ	N(40)-N	N(45)-N	N(50)-N	N(55)-N	N(60)-N	N(65)-N	N(70)-N	N(75)-N	И(80)-Й
					1981-1983	3				
OESTE	-0.11	-0.13	-0.14	-0.22	-0.29	-0.36	-0.34	-0.10	0.40	1.24
NORTE	0.85	0.69	0.64	0.32	0.03	-0.40	-0.70	-0.72	-0.54	-0.13
ESTE	-0.26	-0.28	-0.34	-0.49	-0.62	-0.65	-0.50	0.03	0.94	2.12
SUR	0.61	0.42	0.27	-0.11	-0.48	-0.83	-0.91	-0.63	0.17	1.44
					1973 –197	' 5	4.			
OESTE	-0.29	~0.28	-0,33	-0.38	-0.25	-0.25	-0.32	-0.14	0.52	1.75
NORTE	0.31	0.30	0,28	0.07	-0.01	-0.30	-0.67	-0.62	-0.13	0.78
ESTE	-0.65	-0.65	-0.77	-0.88	-0.77	-0.62	-0.45	0.20	1.38	3.17
SUR	0.26	0.06	-0.20	-0.53	-0.65	-0.85	-0.88	-0.42	0.70	2.51
					1971-1972	2				
OESTE	0.26	0.18	0.01	-0.27	-0.43	-0.55	-0.47	-0.33	0.29	1.30
NORTE	0.88	0.78	0.62	0.16	-0.25	-0.64	-0.84	-0.81	-0.32	0.41
ESTE	-0.07	-0.17	-0.42	-0.80	-1.02	-0.97	-0.61	0.06	1.22	2.82
SUR	0.81	0.52	0.13	-0.47	-0.90	-1.21	-1.03	-0.57	0.56	2.20
					1960-1962	2				
OESTE	0.26	0.22	0.05	-0.17	-0.16	-0.41	-0.53	-0.53	0.00	1.28
NORTE	0.58	0.63	0.61	0.20	-0.04	-0.51	-0.84	-0.85	-0.40	0.64
ESTE	-0.24	-0.30	-0.54	-0.83	-0.86	-0.88	-0.66	0.00	1.21	3.14
SUR	0.60	0.34	-0.05	-0.53	-0.78	-1.14	-1.07	-0.59	0.62	2.57
					1949-195	l		•		
OESTE	0.45	0.42	0.22	-0.06	-0.12	-0.42	-0.57	-0.61	-0.18	0.88
NORTE	0.52	0.65	0.50	0.14	-0.14	-0.56	-0.86	-0.79	-0.24	0.76
ESTE	0.03	-0.07	-0.40	-0.79	-0.91	-0.96	-0.76	-0.13	0.98	3.01
SUR	0.79	0.48	-0.02	-0.60	-0.89	-1.27	-1.13	-0.57	0.62	2.61

Fuente: Cuadro II. 3.

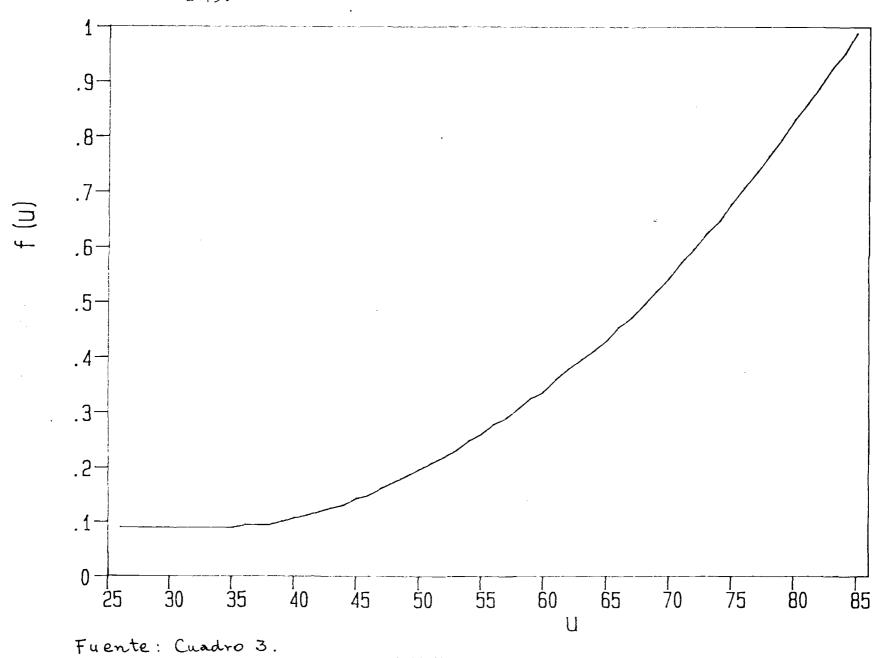
CUADRO II. 5

-x 1 1 3 8 4' 8

Honduras. Valores del parámetro α en el sistema logito de Brass, correspondientes a las estimaciones de mortalidad obtenidas con orfandad materna, usando como standard tablas de mortalidad femenina de Honduras.

	1 Q(x)	15 15 D		1981-198	33		1973-197	75		1971-1972	2		1960-196	2		1949-195	1
idad X	(x) = (25)	$\chi(x) = \frac{1}{\ell(xc)}$	Y'(x)	Y ¹ S (x)	$\frac{33}{\propto -Y^{1}(x)-Y^{1}S}$	() 1 ^{'s} (x) Y ^{' S} (x)	×	1 · 2 (x)	Y'S(x)	9	1'S(x)	Y's(x)	×	l' ^S (x)	Y ¹⁵ (x)	×
25	1.	1.				1			1			1			1		
30		0.98881		-2.24074		0.97955	-1.93456		0.97871	-1.91400							
35	0.9797	0.97554	-1.93831	-1.84298	-0.09533	0.95458	-1.52266	-0.41565	0.95453	-1.52208	-0.41623	0.93645	-1.34522	-0.59309	0.91713	-1.20199	-0.73632
40	0.9629	0.95957	-1.62817	-1.58346	-0.04471	0.92769	-1.27587	-0.35230	0.92675	-1.26890	-0.35927	0.90004	-1.09883	-0.52934	0.87092	-0.95456	-0.67361
45	0.9384	0.93986	-1.36176	-1.37276	0.01100	0.89637	-1.07876	-0.28300	0.89349	-1.06345	-0.29831	0.85878	-0.90260	-0.45916	0.81943	-0.75625	-0.60551
50	0.9066	0.91199	-1.13540	-1.16909	0.03269	0.85901	-0.90355	-0.23285	0.85154	-0.87337	-0.26303	0.81109	-0.72855	-0.40785	0.76146	-0.58035	-0.55605
55	0.8505	0.87354	-0.86926	-0.96631	0.09705	0.81331	-0.73583	-0.13343	0.79862	-0.68885	-0.18041	0.75462	-0.56170	-0.30756	0.69485	-0.41144	-0.45782
60	0.7868	0.82049	-0.65287	-0.75984	0.10597	0.75097	-0.55190	-0.10097	0.73149	-0.50110	-0.15177	0.67898	-0.37454	-0.27833	0.60890	-0.22135	-0.43152
65	0.6836	0.74624	-0.38518	-0.53933	0.15415	0.66311	-0.33859	-0.04659	0.64514	-0.29887	-0.08631	0.58163	-0.16473	-0.22045	0.50325	-0.00650	-0.37868
70	0.5488	0.64726	-0.09791	-0.30351	0.20560	0.55541	-0.11128	0.01337	0.53545	-0.07102	-0.02689	0.46625	0.06760	-0.16551	0.38609	0.23189	-0.32980
75	0.4068	0.51843	0.18860	-0.03688	0.22548	0.43037	0.14017	0.04843	0.40964	0.18273	0.00587	0.34202	0.32715	-0.13855	0.26913	0.49952	-0.31092
80	0.2429	0.36730	0.56842	0.27191	0.29651	0.29871	0.42672	0.14170	0.27566	0.48305	0.08537	0.22430	0.62039	-0.05197	0.16711	0.80312	-0.2347

^{1&#}x27;(x) son los valores obtenidos con la orfandad materna


$$Y(x) = \frac{1}{2} \ln \left[\frac{1 - 1(x)}{1(x)} \right]$$

l's(x) son los valores obtenidos de la tabla usada como standard .

ANEXO III

ESTIMACION DEL TIEMPO CON DISTINTOS METODOS.

GRAFICO III.1 Función f(u) usada en el cálculo de T, con el método de Brass-Bamgboye, con valores extrapolados a partir de u=75.

CUADRO III.1.

EDENHII. DETERMINACION DEL MOMENTO AL QUE CORRESPONDEM LAS ESTIMACIONES DE MORTALIDAD FEMENINA ADULTA OBTENIDAS CON OBFANDAD MATERNA, USANDO EL METODO DE BRASS BAMGBOYE Y LA SIMPLIFICACION DE BRASS.

Grupos de	Ä	NO EUERFANOS	HUERFANOS DE					BBASS-BA	45BOYE	PRAS	SS
Edad	•	DE MADRE		S(N-5,10)	4M + N	f(M+N)	u(N)	T(N)	ANO	T(N)	ANO
)-p	 5	 20825	193	0.9908	31.48	0.0900	0.0888	2.079	1981,5	2.426	1581.4
5-14	17	17758	387	0.9787	35.48	0.0925	0.0872	4,554	1970.1	4.591	1977.1
10-10	15	14195	609	0 . 9589	41.48	0.1120	0.0909	6.751	1977.0	6.783	1977.0
15+24	20	11254	235	0.9310	46.48	0.1545	0.1324	9.574	1975.1	8,575	1975.1
20-29	25	3589	1061	0.8298	51.48	0.2115	0.1745	10.319	1973.5	10.354	1973.4
25-34	30	5308	1391	0.8290	56.48	0.2815	0.2209	11.697	1972.1	11.927	1972.0
30 -3 9	35	4672	1531	0.7532	61.48	0.3650	0.2715	12.731	1971.0	11.963	1970.9
35-44	4	3243	1935	0.2424	55.45	0.4525	0.3159	13.652	1976.1	13.778	1970.3
	45	2215	27.50	0.5195	71.43	0.5815	0.3851	14,185	17:5.5	12,475	1973.2
45~54	50	1453	2194	0.3987	75.43	0.7215 +	0.4169	14,578	1959.2	939.۵	1973.8
50~59	55	824	- 2247	0.2553	51.48	0.8740 +	0.4374	15,472	1988.3	ln(-)	-
55-54	£0	55.7	2118	0.1545	88.49	1.0390 •	0.4185	17.445	1965.3	15(-)	-

M = 25.45

FERRA ENCUESTA = 1988.78

(*) Son valores extrapolados de la funcion f(u) tabulada en quadro 3.

BBASS-BAMGEOYE:
$$\begin{cases} u(R) = 0.3338 \ln \left[S(R-5.10) \right] + f(M+R) + 0.0037(27-M) \\ T(R) = R(1.0 - u/R)) \neq 2.0 \end{cases}$$

BRASS:
$$T(N) = \frac{1}{5} N \left[3 - \frac{\ln \left[(S(N-5, 10)(1-M/80)) \right]}{\left[1 - (N-M)/80 \right]} \right]$$

CUADRO III. 2

Honduras. Estimación de la mortalidad femenina adulta usando el método de Zlotnik - Hill. Período 1973 - 1983.

1

		S(N,1)	S(N,2)	S(N,s)			1 (25+N)	OES	TE
EDAD	1974.17	1973.78	1983.78	, , ,	N	W(N)	1(25)	N.C. y D.	e 25
0- 4	0.9949	0.9949	0.9958	0.9958*					
5- 9	0.9804	0.9802	0.9854	0.9854*	10	0.6249	0.9801	20.42	48.03
10-14	0.9620	0.9617	0.9705	0.9714	15	0.7236	0.9653	20.25	47.83
15-19	0.9303	0.9297	0.9445	0.9495	20	0.8183	0.9448	20.02	47.55
20-24	0.8815	0.8802	0.9147	0.9239	25	0.8880	0.9185	19.94	47.46
25-29	0.8136	0.8118	0.8571	0.8754	30	0.9275	0.8724	19.37	46.82
30-34	0.7214	0.7184	0.7951	0.8346	35	0.9519	0.8308	19.83	47.34
35-39	0.6104	0.6067	0.7006	0.7555	40	0.9118	0.75 04	19.55	47.02
40-44	0.4981	0.4951	0.5727	0.6979	45	0.8418	0.6776	20.62	48.27
45-49	0.3865	0.3836	0.4574	0.5696	50	0.6546	0.5335	20.60	48.24
50-54	0.2642	0.2615	0.3300	0.4652	55	0.4114	0.3610	20.74	48.41
55-59	0.1727	0.1718	0.1940	0.2881	60	0.1799	0.2052		
60-64	0.1034	0.1033	0.1051	0.1870	65				
65 y +	0.0474	0.0482	0.0266	0.0446					
Total	0.8111	0.8105	0.8261						

(*) Tomadas directamente de S(N,2)

$$M_1 = 27..03$$
 $\overline{M} = 26.76$
 $M_2 = 26.48$

Handurac. Estimación de la contalidad terenina estalta usas propuesto por Preston. Período 1974-1983.

	S(n,1)	S(n,2)	Tarun de spesien.	$r_h^{\frac{1}{2}\cdot \frac{1}{2}}$	
EDAD	1974.17	1983.78	ament sta	2 01 n	
0- 4	.0.9949	0.9958	0.00009	0.00023	1.0002
5~ 9	0.9804	0.9854	0.00053	0.00178	1.0017
10-14	0.9620	0.9705	0.00092	0.0054	1.0054
15~19	0.9303	0.9445	0.00158	0.01165	1.0117
20-24	0.8815	0.9147	0.00385	0.02523	1.0255
25-29	0.8136	0.8571	0.00542	0.0484	1.0495
30~34	8.7214	0.7951	0.01012	0.08725	1.0911
35~39	0.6104	0.7006	0.01434	0.1484	1.1599
40-44	0.4981	0,5727	0.01452	0.22055	1.2467
45-49	0.3865	0.4574	0.01753	0.30068	1.3507
50~54	0.2642	0.3300	0.02314	0.40235	1.4953
55~59	0.1727	0.1940	0.01210	0.49045	1.6335
60-64	0.1034	0.1051	0.00170	0.52495	1.6903
65~+	0.0474	0.0266	-0.06012		

 $M_1 = 27.03$ $M_2 = 26.48$ $\overline{M} = 26.76$

T = 9.61

chetêm la chr

Proparaión	Proporaió	-,		1/05 N1	OES	TE
nominate no-nuérf. h(n,t)	Ajustad de no-ha		ฟ(N)	1(25+N) 1(25)	NCyD	e ₂₅
0.99535 0.98290 0.96624 0.93737 0.89795 0.83507 075735 0.65395 0.53410 0.42046 0.29527 0.18304 0.10425 0.03551	0.9956 0.9846 0.9715 0.9484 0.9720 0.8765 0.8264 0.7586 0.6659 0.5679 0.4415 0.2989	5 10 15 20 25 30 35 45 55 60 65	0.6249 0.7236 0.8183 0.8880 0.9275 0.9519 0.9519 0.6546 0.4114 0.1799	0.9797 0.9651 0.9434 0.9159 0.8729 0.8231 0.7504 0.6504 0.5242 0.3576 0.1983	20.35 20.22 19.90 19.77 19.40 19.49 19.55 19.73 20.62	47.95 47.79 47.42 47.27 46.85 46.96 46.96 47.23 47.90 48.27

CUADRO III.4.

EDENH II. Promedio aritmetico, desviacion standard e intervalos de confianza para la distribucion de la muerte de las madres, segun grupos de edad de hijos entrevistados.

EDAD DEL ENCUESTAD	EDAD CENTRAL N	FECHA PROMEDIO	DESVIACION STANDARD	INTERVALO DE CONFIANZA
0-9	<u>.</u>	1930.75	2.08	1980.45 - 1981.05
5-14	10	1978.84	3.35	1978,50 - 1979.19
10-19	15	1976.59	4.94	1976.20 - 1976.98
15-24	20	1974.82	6.26	1974.39 - 1975.25
20-27	25	1972.71	7.75	1972.24 - 1973.18
25-34	30	1970.60	9.47	1970.08 - 1971.12
30-39	35	1938.55	11.19	1967.99 - 1969.11
35-44	\mathcal{L}_{τ} ([)	1955.64	12.84	1965.50 - 1967.03
garage and the	<u> </u>	1964,31	14.47	1983.32 - 1985.14
45-54	56	1952.34	11.65	1981.68 - 1963.00
50-59	हु ह	1960.10	16.94	1959,40 - 1960,80
55-±a	- 50	1957,64	18,41	1955.85 - 1958.42

Eventa: Tabulados originales de la EDENH II.

ANEXO IV

MIGRACION INTERREGIONAL Y ESTIMACIONES DE LA MORTALIDAD FEMENINA ADULTA SEGUN REGIONES DE SALUD DE HONDURAS.

MAPA: REGIONES DE SALUD DE HONDURAS.

Fuente: UNICEF y CELADE, Op. cit.

CUADRO IV.1.

EDENH II. Migración Interregional (de toda la vida), por Grupos de edades, según la condición de orfandad materna.

	N D - H	UERFANOS (MADRE VIVA	1)	HUERFANOS (MADRE MUERTA)				
EDAD	No migr	an-migrant	es total	%Migrantes	No mią grante	_	- total·	% migrantes	
0-4	10673	390	11063	3.53	41	6	47	12.77	
5~9	9220	604	9 824	6.15	138	· 8	146	5.48	
10 ~ 14	7199	737	7 936	9.23	215	26	24 1	10.79	
15-19	5 3 4 9	911	6 260	14.55	299	69	368	18.75	
20-24	4018	988	5 006	19.74	359	108	467	23.13	
25-29	2697	867	3 565	24.33	4 30	164	594	27.61	
30-34	2106	638	2 744	23.25	510	197	707	27.86	
35-39	1432	497	1929	5.76	589	235	824	28.52	
40-44	982	333	1315	25.32	717	264	981	26.91	
45-49	681	220	901	24.42	795	274	1069	25.63	
50-54	4 15	139	554	25.09	847	279	1126	24.78	
55-59	211	60	271	22.14	812	310	1122	27.63	
60-64	90	27	117	23.08	726	271	997	27.18	
65y+	44	15	59	15.42	1592	567	1259	26.26	
TOTAL	45117	6426	5 154 3	12.47	8070	2778	10848		

Fuente: Tabulados originales de la EDENH II.

CUADRO IV. 2

EDENHII. Migración Interregional (de los últimos 5 años) por grupos de edades, según la condición de orfandad.

	NO-HUERFANI	DS (MADRE VI	(VA)	•	HUERFANDS (MADRE MUERTA)				
EDAD	No migran- tes	Migrante	total	%migrantes	No migran- te s	migra	ntes total	%migrantes	
0-4			11063				 47		
5 - 9	9 453	371	9824	3 . 70	139	7	146	4.79	
10-14	7 611	325	7 936	4.10	235	6	24 1	2.49	
15-19	5 855	405	6 260	6.47	327	41	368	11.14	
20-24	4 591	4 15	5 006	8.29	4 18	49	467	10.49	
25-29	3 319	245	3 564	6.87	54 1	53	594	8.92	
30-34	2 604	140	2 744	5.10	670	37	707	5.23	
35-39	1 845	84	1 929	4.35	781	43	824	5.22	
40-44	1 279	36	1 315	2.74	955	26	981	2.65	
45-49	888	13	901	1.44	1 042	27	1 069	2.53	
50-54	542	12	554	2.17	1 104	22	1 126	1.95	
55-59	266	5	271	1.85	1 091	31	1 122	2.76	
60-64	112	5	117	4.27	974	23	997	2.31	
65y+	56	3	59	5.08	2 122	37	2 159	1.71	
TOŤAL	38 421	2 059	40 480	5.09	10 399	402	10 801	1.72	

Fuente: Tabulados originales de la EDENH II.

CUADRO IV. 3.

EDENH II. Estimaciones de mortalidad femenina adulta a nivel nacional y regional.

					HONDU	RAS		
	Α	ho 1983	.78		Modelo Oes	:te		
SDAD	មអីបិត្តទ	ниев	H	NH(N-5)	1(25+N)/1(25)	P.CSD	e(25)	Ano
15-19	6259	368	20	0.9445	0.9334	19.49	44.95	1974.0
20-24	5005	467	25	0.9147	0,9997	19.36	46.81	1974.3
	2554	•• .	30	0.3571		18.45		1972.7
	7744		56	0.7951		18.33	65,36	1771.5
	923		4, ()	0.7006		11,80		1970.3
				0.5727		11.06	74.27] 059.E
•		1039	50	-	0.4465	17,57		1966.3
Elad e	edia de	las mad:	n 6: 5:	:26.48				
		S ম	GUN	RESIDEN	CIA ACTUAL .	EL ENC	ULSTADO	0
		02	0011	A CAMP C	REGION I			_
		నింద్రం కొత్తిన్న	9.78		Models (me	2576		
	MHUFR	4617	ķ.	NH (N-3)	1(25+M1,1/25)	M. Call	et 25	ា គ្នាត់
.54.0	1500	94	26	0.0436	0.4351	10.23	¥e.55	1975.0
20-24	1424	134	25	0.9111	0.9049) 9. 00	a5,45	3974.2
22-29	1012	151	30	0.8702	0.3665	19.05	46.49	1972.8
30-36	753	172	35	0.8141	0.8148	19.10	45.50	1971.6
55.45C	489	137	40	0.7234	0.7570	19.67	45.94	1970.7
45,000	251	243	4 5	0.8727	10 - 5 2 50 Ca	18493	94.13	1689.5
u 3 = 5 9	213	245	50	0.4698	0.0572	18.05	45.35	1959.4
Edwa	ಶಾರಿತಿಸುತ ಬಿಡ	las mad	dres	:26.33				
					REGI	ON II		
	·	Mao 1983	7.8		Modelo Oe	ste		
CDAGS	NHUER	HUER	N	ИН (M-S)	1(25+N)/1(25)	M.CSD	e(25) Año
13-19	540	23	20	0.9591	0.9562	20.96	48.67	1976.1
20-24	439	30	25	0.9301	0.9293	20.64	48.30	1974.4
25-29	299	67	30	0.8169	0.8188	16.60	43.78	1972.6
30-34	227	69	35	0.7669	0.7747	17.35	44.59	1971.4
35-39	133	85	40	0.6188	0.6263	14.81	41.91	1969.9
40-44	88	110	45	0.4388	0.4337	11.82	38.86	1967.9
45-49	75	127	50	0.3713	0.3596	14.29	41.37	1968.0

REGION III
Año 1983.78 Modelo Oeste

EDAD	NHUER	HUER	Н	NH(N-5)	1(25+N)/1(25)	M.C&D	e(25) Año
15-19 20-24 25-29 30-34 35-39 40-44 45-49	2116 1646 1179 914 651 474 289	121 162 196 231 267 307 330	20 25 30 35 40 45 50	0.9459 0.9104 0.8575 0.7983 0.7092 0.6069 0.4669	0.9386 0.9033 0.8521 0.7960 0.7091 0.6049 0.4508	19.50 18.94 18.31 18.29 18.00 18.18 17.82	46.97 46.34 45.63 45.62 45.29 45.49 45.10	1976.0 1974.2 1972.7 1971.5 1970.5 1969.9

Edad media de las madres :26.20

REGION IV

	٥	იი 1983	.78	Modelo Ceste					
EDAD	инцев	HUEB	ķī	PH(M-5)	1 2148 ((1/25)	H.Cab	0(25	ំ កំណុះ	
15-19	424	47	70	0 .9 300	0. 0 268	13.55	45.90	1976.0	
20-24	454	[3.9	25	0.9709	0.9937	20.15	47.71	3974.4	
25-29	313	5.2	30	9.8573	0.9634	18.39	46.29	1972.3	
3034	250	7.1	3.5	0.7858	0.7997	18.35	45.71	1971.5	
25-39	234	31	40	0,7346	0.75:3	10,77	47.27	1971.1	
40-44	130	103	45	ပွန္ဦးသားမှမ	0.6126	19.46	48.70	1970.2	
45-49	101	117	50	0.4633	0.4711	18.53	75.99	Io94.6	

Edad media de las madres :27.24

BECTON V	7	Τ.	RT.	0	т	ם	

	.4	no 1983	7.79	Modelo Ceste					
EDAD	PHUER	HUSR	N	ИН (N-5)	1(25+M)/1(25)	M.CSD	e (25) Ado	
15-19 20-24 25-29 30-34 35-39 40-44 45-49	537 401 298 232 162 108 83	38 45 61 80 105 101	20 25 30 35 40 45	0.9339 0.8991 0.8301 0.7436 0.6067 0.5167 0.4109	0.9284 0.8984 0.8294 0.7468 0.6081 0.5152 0.3986	13.68 18.44 17.14 16.31 14.09 14.93	46.04 45.78 44.36 43.26 41.17 42.03 43.02	1976.0 1974.2 1972.6 1971.2 1969.7 1969.0	

REGION VI

Modelo Oeste

EDAD	NHUER	HUER	И	NH(N-5)	1(25+N)/1(25)	N.C&D	e(25) Año
15-19	475	24	20	0.9519	0.9439	19.95	47.47	1976.0
20-24	366	35	25	0.9127	0.9042	19.00	46.40	1974.2
25-29	291	45	30	0.8620	0.8546	18.44	45.78	1972.7
30-34	217	53	25	0.8037	0.7988	18.41	45.75	1971.5
35-39	145	51	40	0.7398	0.7385	19.10	46.52	1970.7
40-44	302	63	45	0.6182	0.6131	18.46	45.80	1970.0
45-49	77	84	50	0.4783	0.4591	18.12	45.43	1969.4

Edad media de las madres :26.00

REGION VII

	۸	ña 1983	.78	. Modelo Oeste					
gpap	NHUES	HUEF	Ņ	PH(N-5)	1(25+N)/1(25)	M.Cap	e(25) గద్	
13-19	353	lo	20	0.9872	0.9834	10.73	43.29	1975.1	
20-24	275	14	25	0.9516	0.9501	22.02	50.19	1974.4	
25-29	182	.2.2	(37)	0.8922	0.9944	20.54	48.18	1972.9	
30-34	[4]	2.1	35	0.8198	0.8276	19.69	47.18	1971.8	
35-39	jiφ	43	40	0.7126	0.7245	18.57	45.93	1970.7	
40-44	ين در	50	45	0.5614	0.5676	16.87	44.05	1969.6	
45-49	5.9	45	50	0.5577	0.3691	21.54	49.50	1971.1	

Edad media de las madres :26.83

SEGUN RESIDENCIA HACE CINCO ANOS DEL ENCUESTADO REGION I

				Modelo Oesto					
EDAD N	HUER	HUER	Ħ	NH(N-5)	1(25+N)/1(25)	N.CED	e(25) Año	
* .	1496 1351 991 748 481 326 216	84 129 150 173 183 251 241	20 25 30 35 40 45 50	0.9468 0.9128 0.8685 0.8122 0.7244 0.5650 0.4726	0.9402 0.9068 0.8649 0.8125 0.7281 0.5608 0.4604	19.64 19.16 18.97 19.02 18.71 16.62	47.12 46.59 46.33 46.42 46.03 43.80	1976.0 1974.2 1972.8 1971.6 1970.7 1969.5	

EDAD	NHUER	HUER	N	NH(N-5)	1(25+N)/1(25)	N.C&D	e(25) Año
15-19 20-24 25-29 30-34 35-39 40-44 45-49	556 464 237 230 138 88 74	28 36 64 72 36 111	20 25 30 35 40 45	0.9521 0.9280 0.8177 0.7616 0.6161 0.4422 0.2645	0.9488 0.9271 0.8196 0.7691 0.6233 0.4376 0.3513	20.34 20.50 16.64 17.11 14.69 11.96	47.94 48.13 43.82 44.32 41.73 39.01 41.04	1976.1 1974.4 1972.6 1971.4 1969.9 1968.0

Edad media de las madres :26.98

REGION III

	,	And 1983	.7E	modelo Geste					
EDAD	RHUER	низв	н	NH:N-S)	1(25+N)/1(25)	W.C0D	9631	ិស្ស	
15-19	2031	. 112	20	0,0480	0.9418	19.77	47.27	1976.0	
20-24	1593	157	28	0.9103	0.9032	19,93	44,35	1974.2	
25-29	1174	. 54	30	0.9613	9.3551	13.52	45.87	1972.7	
30-34	808	210	35	0.8089	0.8020	18.55	45.91	15.11.2	
35-39	653	258	40	0.7168	0.2124	18.31	45.64	1570	
40-44	475	205	45	0.6161	0.6152	10.55	45.59	1520.0	
45-49	297	326	50	0.4632	0.4523	17.88	45.15	1059.3	

Edad media de las madres :36.20

REGION IV

	Α	no 1983	. 7ε	Modelo Geste				
edad	иниек	HUER	N	HH(N-5)	1(25+N)/1(25)	$N \cdot (C \circ D)$	e(25) Ario
15-19	689	55	20	0.9261	0.9227	18.22	45.54	1976.0
20-24	509	47	25	0.9155	0.9162	19.78	47.29	1974.3
25-29	333	55	30	0.8582	0.8641	18.93	46.33	1972.8
30-34	267	7.2	35	0.7876	0.8002	18.47	45.82	1971.6
35-39	225	85	40	0.7258	0.7470	19.42	46.88	1971.0
40-44	149	107	45	0.5820	0.6004	18.02	45.32	1970.1
45-49	100	116	50	0.4630	0.4707	18.52	45.87	1969.9

REGION V

	A	რი 1983	.78	Modelo Oeste					
EDAD	NHUER	HUER	И	NH(N-5)	1(25+N)/1(25)	N.C&D	e(25) Año	
15-19	591	44	20	0.9307	0.9250	18.41	45.75	1976.0	
20-24	434	49	25	0.8986	0.8949	18.40	45.74	1974.2	
25-29	322	65	30	0.8299	0.8292	17.13	44.35	1972.6	
30-34	244	86	35	0.7394	0.7419	15.92	43.06	1971.2	
35-39	173	113	40	0.6049	0.6061	14.01	41.09	1969.7	
4()44	111	102	45	0.5211	0.5201	15.12	42.22	1969.1	
45-49	85	123	50	0.4087	0.3951	15.78	42.91	1968.6	

Edad media de las madres :26.71

REGION VI

	Α	იი 1983	.78	Modelo Cesto					
SDaD	HEUES	нрев	М	바막 (H-5)	1(25+8)/1/25)	N.CSD	e i 23	1 060	
15-10	451	2.0	20	0.9466	0.9334	19.49	44.95	1976.0	
20-24	376	5.0	25	0.9193	0.9110	19.44	45.90	1974.2	
25-29	275	45	20	0.8594	0.8520	13.30	45.63	1972.7	
30-34	217	E. C.	35	0.7978	0.7925	18.14	45.45	1971.5	
35-39	130	4.3	$\omega 0$	0.7433	0.7423	19.24	40.58	1970.3	
40-44	101	to 25	45	0.5084	0.5021	18.09	45,39	၂၀၉၈ ့ ၄	
45-49	79	23	50	0.4877	0.4699	18.40	45.34	1969.5	

Edad media de las madres :26.00

REGION VII

	Δ	fic 1983	.78		Modelo Oe∙	ste		
CDAD	иниев	нивв	Н	ИН (И-5)	1(25+N)/1(25)	N.C&D	e(25) Año
15-19	386	Īώ	20	0.9531	0.9490	20.37	47.97	1976.1
20-24	279	16	25	0.9458	0.9442	21.62	49.62	1974.4
25-29	182	25	30	0.8792	0.8811	19.84	47.35	1972.9
30-34	140	30	35	0.8235	0.8315	19.86	47.38	1971.8
35-39	120	51	40	0.7018	0.7128	18.13	45.44	1970.7
40-44	65	49	4.5	0.5702	0.5774	17.22	44.44	1969.7
45-49	60	51	50	0.5405	0.5495	21.07	48.83	1970.8

SEGUN REGION DE NACIMIENTO DEL ENCUESTADO

		Año 1983	.78	REC				
EDAD	NHUER	HUER	И	NH(N-5)	1(25+N)/1(25)	N.CSD	e(25) Año
15-19 20-24 25-29 30-34 35-39 40-44	1441 1154 799 628 432 271	78 108 119 145 153 206	20 25 30 35 40 45	0.9487 0.9144 0.8704 0.8124 0.7339	0.9421 0.9084 0.8668 0.8128 0.7384 0.5643	19.79 19.27 19.08 19.03 19.10 16.75	47.30 46.71 46.49 46.44 46.51 43.94	1976.0 1974.2 1972.8 1971.6 1970.8 1969.5
45-49	1 05	205	50	0.4875	0.4775	19.75	46.13	1969.7

Edad media de las madres :26.33

REGION II

	А	ño }°83	.79	Modelo Oesto				
SDAD	PHUSE	ниев	И	NH (N-5)	1(25+N)/1(25)	N.COD	67.25	រ And
15-19	6 0a	31	20	0.9513	0.9480	20.23	47.87	1976.1
20-24	542	.3a	2.5	0.9329	0.9327	36.83	49.52	1974.4
25-29	367	7.7	30	0.8266	0.8287	17.10	44.32	1972.6
30-34	500	95	35	0.7589	0.7663	16.99	44.19	1971.4
33-39	183	117	$\mathcal{L}^{_{1}}\left(\widetilde{\mathbb{Q}}\right)$	0.6100	0.6167	14,43	41.53	1939.8
4()44	348	150	45	0.4932	0.4949	14.15	41.23	1968.8
45-49	107	173	50	0.3821	0.3720	14.81	41.90	1968.2

Edad media de las madres :26.98

REGION III

	ړ.	no 1983	.78		Modelo Ceste				
EDAD	AHREB	HUER	Н	ИН(И-5)	1(25+N)/1(2S)	N.OWD	e(25) Año	
15-19	1945	103	20	0.9497	0.9428	19.83	47.34	1975.0	
20-24	1435	148	25	0.9065	0.8993	18.68	46.05	1974.2	
25-29	990	155	30	0.8646	0.8595	13.69	46.06	1972.7	
30-34	728	161	35	0.8189	0.8177	19.25	46.68	1971.6	
3539	471	174	40	0.7302	0.7320	18.85	46.24	1970.7	
40-44	340	191	45	0.6403	0.6424	19.46	46.93	1970.3	
45-49	187	211	50	0.4698	0.4542	17.95	45.24	1969.4	

REGION IV

	ع	თი 1983	. /8		(JOGETO CE	ste		
EDAD	NHUER	HUER	И	ин (и-5)	1(25+N)/1(25)	N.C&D	e(25) Año
15-19	782	59	20	0.9298	0.9267	18.54	45.89	1976.0
20-24	665	64	25	0.9122	0.9128	19.56	47.04	1974.3
25-29	498	23	30	0.8571	0.8630	18.87	46.26	1972.8
30-34	390	97	35	0.8008	0.8140	19.08	46.50	1971.7
35-39	326	123	40	0.7261	0.7472	19.43	46.89	1971.0
40-44	201	159	45	0.5583	0.5738	17.09	44.30	1969.8
45-49	136	152	50	Ö.4722	0.4813	18.89	46.28	1970.0

Edad media de las madres :27.24

	A	ne 1983	.78	RE	CGION V Modelo Oe			
EDAD	NHUER	ниек	Н	NH(N-5)	1(25+N)/1(25)	N.C&D	e(25) Año
15-19	710	51	20	0.9330	0.9274	13.60	48.96	1975.0
2024	561	61	20	0.9050	0.9015	18.82	46.21	3974.2
25-29	435	φņ	30	0.8254	0.8245	16.39	44.09	1972.6
30-34	337	129	35	0.7232	0.7249	15.18	42.28	1971.3
35-39	272	174	40	0.6099	0.8114	14.22	41.30	1969.7
40-44	194	160	4.5	0.5212	0.5202	15.12	42.23	1969.1
45-49	140	[ဝင	50	0.4130	0.4010	15.98	43.12	1968,6

Edad media de las madres :26.71

REGION VI									
And 1983.78									
NHUER	HUER	N	NH(N-5)	1(25+N)/1(25)	N.C&D	e(25)	Ario		
404	28	20	0.9347	0.9259	18.48	45.82	1976.0		
323	25	25	0.9282	0.9201	20.04	47.58	1974.3		
253	3 ^Q	30	0.8664	0.8592	18.68	46.05	1972.7		
207	45	35	0.8214	0.8174	19.23	46.67	1971.6		
117	36	40	0.7647	0.7654	20.11	47.66	1971.0		
101	52	45	0.6601	0.6602	20.06	47.60	1970.4		
67	71	50	0.4855	0.4674	18.41	45.75	1969.5		
	NHUER 40: 323 253 207 117 101	NHUER HUER 404 28 328 25 253 39 207 45 117 36 101 52	40: 28 20 323 25 25 253 39 30 207 45 35 117 36 40 101 52 45	Ano 1983.78 NHUER HUER N NH(N-5) 404 28 20 0.9347 328 25 25 0.9282 253 39 30 0.8664 207 45 35 0.8214 117 36 40 0.7647 101 52 45 0.6601	Ano 1983.78 Modelo (e. NHUER HUER N NH(N-5) 1(25+N)/1(25) 401 28 20 0.9347 0.9259 328 25 25 0.9282 0.9201 253 39 30 0.8664 0.8592 207 45 35 0.8214 0.8174 117 36 40 0.7647 0.7654 101 52 45 0.6601 0.6602	NHUER HUER N NH(N-5) 1(25+N)/1(25) N.CSD 404 28 20 0.9347 0.9259 18.48 328 25 25 0.9282 0.9201 20.04 253 39 30 0.8664 0.8592 18.68 207 45 35 0.8214 0.8174 19.23 117 36 40 0.7647 0.7654 20.11 101 52 45 0.6601 0.6602 20.06	Ano 1983.78 Modelo Ceste NHUER HUER N NH(N-5) 1(25+N)/1(25) N.C&D e(25) 401 28 20 0.9347 0.9259 18.48 45.82 328 25 25 0.9282 0.9201 20.04 47.58 253 39 30 0.8664 0.8592 18.68 46.05 207 45 35 0.8214 0.8174 19.23 46.67 117 36 40 0.7647 0.7654 20.11 47.66 101 52 45 0.6601 0.6602 20.06 47.60		

REGION VII
Año 1983.78 Modelo Oeste

EDAD	NHUER	HUER	N	NH(N-5)	1(25+N)/1(25)	N.C&D	e(25) Año
15-19	376	18	20	0.9543	0.9503	20.47	48.09	1976.1
20-24	306	22	25	0.9329	0.9310	20.75	48.43	1974.4
25-29	222	29	30	0.8845	0.8864	20.12	47.68	1972.9
30-34	155	35	35	0.8158	0.8234	19.50	46.97	1971.7
35-39	138	47	40	0.7459	0.7606	19.93	47.45	1971.0
40-44	72	54	45	0.5714	0.5788	17.27	44.49	1969.7
45-49	69	58	50	0.5433	0.5526	21.15	48.93	1970.9
					·			